Гама-изблик
Гама-изблиците (ГЗИ) се неизмерно енергетски експлозии кои се забележани во далечните галаксии, кои се најсветлите и најкрајните експлозивни настани во целиот универзум,[1][2][3] како што ги опишува НАСА, изблиците се како „најмоќна класа на експлозии во универзумот“.[4] Тие се најенергичните и најсветлите електромагнетни настани од Големата експлозија.[5][6] Гама-изблиците може да траат од десет милисекунди до неколку часа.[7][8] По првичниот блесок на гама-зраците, емитуван е „проследен сјај“, кој е подолготраен и обично е емитуван на подолги бранови должини (рендгенски, ултравиолетови, оптички, инфрацрвени, микробранови и радио).[9]
Сметано е дека интензивното зрачење на повеќето набљудувани гама-изблици се ослободува за време на супернова или суперсјајна супернова бидејќи ѕвезда со висока маса експлодира и создава неутронска ѕвезда или црна дупка. Се чини дека поткласа на гама-изблиците потекнува од спојувањето надвојните неутронски ѕвезди.[10]
Изворите на повеќето гама-изблици се оддалечени милијарди светлосни години од Земјата, што значи дека експлозиите се и крајно енергични (вообичаен излблик ослободува онолку енергија за неколку секунди колку што Сонцето ќе ослободи во целиот свој животен век од 10 милијарди години)[11] и исклучително ретко (неколку по галаксија на милион години[12]). Сите набљудувани гама-изблици потекнуваат надвор од галаксијата Млечен Пат, иако поврзана класа на феномени, меки гама-повторувачи, се поврзани со магнетари во Млечниот Пат. Претпоставувано е дека една гама-изблик во Млечниот Пат, насочен директно кон Земјата, може да предизвика настан на масовно изумирање.[13] Некои истражувачи претпоставуваат дека доцното ордовициско масовно истребување се случило како резултат на таков изблик на гама-зраци.[14][15][16]
Гама-изблиците првпат биле откриени во 1967 година од сателитите Вела, кои биле дизајнирани да забележуваат тајни тестови за јадрено оружје; по темелна анализа, ова било објавено во 1973 година.[17] По нивното откритие, стотици теоретски модели биле предложени за објаснување на овие изблици, како што се судирите меѓу кометите и неутронските ѕвезди.[18] Малку информации биле достапни за да бидат потврдени овие модели сè до откривањето на првите рендгенски и оптички последователни блесоци во 1997 година и директно мерење на нивните црвени поместувања со помош на оптичка спектроскопија, а со тоа и нивните растојанија и енергетски излези. Овие откритија, и последователните студии на галаксиите и суперновите поврзани со изблиците, ја разјасниле оддалеченоста и сјајноста на гама-изблиците, дефинитивно ставајќи ги во далечните галаксии.
Историја
уредиГама-изблиците за прв пат биле забележани во доцните 1960-ти од сателитите Вела, кои биле изградени за да ги забележуваат импулсите на гама-зрачење емитирани од јадреното оружје тестирано во вселената. Соединетите Држави се сомневаа дека Советскиот Сојуз може да се обиде да изврши тајни јадрени испитувања по потпишувањето на Договорот за забрана на јадрени испитувања во 1963 година.[19] На 2 јули 1967 година, во 14:19 UTC, сателитите Вела 4 и Вела 3 откријле блесок на гама-зрачење за разлика од кој било познат изглед на јадрено оружје.[20] Неизвесно што се случило, но не сметајќи го ова прашање особено итно, тимот од Националната лабораторија Лос Аламос, предводен од Реј Клебесадел, ги поднел податоците на истрага. Бидејќи дополнителните сателити Вела биле лансирани со подобри инструменти, работната група од Лос Аламос продолжила да наоѓа необјасниви изблици на гама-зраци во нивните податоци. Со анализа на различните времиња на пристигнување на изблиците откриени од различни сателити, групата можела да утврди груби проценки за положбите на небото од 16 изблици[20][21] и дефинитивно да отфрли земјино или сончево потекло. Спротивно на општонародното верување, податоците никогаш не биле класифицирани.[22] По темелна анализа, наодите биле објавени во 1973 година како напис на Astrophysical Journal со наслов „Набљудувања на гама-изблиците од космичко потекло“.[17]
Повеќето рани хипотези за гама-изблиците поставиле блиски извори во галаксијата Млечен Пат. Од 1991 година, Комптоновата гама-набљудувачница (КГЗН/CGRO) и нејзиниот инструмент наречен Истражувач на избличен и минувачки извор (ИИМИ/BATSE), исклучително чувствителен забележувач на гама-зраци, обезбедиле податоци кои покажаа дека распространувањето на гама-изблици е изотропно – не е пристрасно кон некоја посебна насока во просторот.[23] Доколку изворите биле од нашата сопствена галаксија, тие би биле силно концентрирани во или во близина на галактичката рамнина. Отсуството на каква било таква шема во случајот со гама-изблици, обезбедило силен доказ дека гама-изблиците мора да доаѓаат надвор од Млечниот Пат.[24][25][26][27] Сепак, некои модели на Млечниот Пат сè уште се во согласност со изотропното распространување.[24][28]
Други тела како кандидати извори
уредиСо децении по откривањето на гама-изблиците, астрономите бараа пандан на други бранови должини: т.е., секое астрономско тело во положбено совпаѓање со неодамна забележаниот изблик. Астрономите разгледувале многу различни класи на тела, вклучувајќи бели џуџиња, пулсари, супернови, збиени јата, квазари, Сејфертови галаксии и тела од типот на BL Гуштер.[29] Сите такви пребарувања биле неуспешни,[nb 1] и во неколку случаи особено добро локализирани изблици (оние чии положби биле утврдени со тогаш висок степен на точност) можело јасно да биде покажано дека немаат светли тела од каква било природа во согласност со положбата добиена од сателитите за забележување. Ова наведувало потекло или на многу слаби ѕвезди или на крајно далечни галаксии.[30][31] Дури и најточните положби содржеле бројни бледи ѕвезди и галаксии, а нашироко било договорено дека конечната резолуција на потеклото на космичките гама-зраци ќе бара нови сателити и побрзо општење.[32]
Проследен отсјај
уредиНеколку модели за потеклото на гама-изблиците претпоставуваа дека првичниот гама-изблик треба да биде проследен со проследен отсјај: бавно избледнувачка емисија на подолги бранови должини создадени од судири помеѓу избувното исфрлање и меѓуѕвездениот гас.[33] Раните пребарувања за овој проследен отсјај биле неуспешни, главно поради тоа што е тешко да биде набљудувана положбата на избликот на подолги бранови должини веднаш по првичниот изблик. Пробивот дошол во февруари 1997 година кога сателитот BeppoSAX забележал гама-изблик (GRB 970228[nb 2]) и кога рендгенската камера била насочена кон правецот од кој потекнува избликот, забележал избледена емисија на рендгенски зраци. Телескопот „Вилијам Хершел“ идентификувал избледувачко оптички тело, 20 часа по експлозијата.[34] Откако гама-избликот избледол, длабокото отслокување било во можност да идентификува слаб, далечен домаќин на галаксијата на местоположбата на гама-избликот како што е прецизно забележано од оптичкиот проследен отсјај.[35][36]
Поради многу слабата сјајност на оваа галаксија, нејзината точна оддалеченост не била мерена неколку години. Па потоа, се случи уште еден голем напредок со следниот настан регистриран од BeppoSAX, GRB 970508. Овој настан бил локализиран во рок од четири часа од неговото откривање, дозволувајќи им на истражувачките работни групи да започнат со набљудување многу порано од било кој претходен изблик. Спектарот на телото открило црвено поместување од z = 0,835, поставувајќи го избликот на растојание од приближно 6 милијарди светлосни години од Земјата.[37] Ова било првото прецизно определување на растојанието до гама-избликот, и заедно со откривањето на галаксијата домаќин од 970228 докажаа дека гама-изблиците се јавуваат во крајно далечни галаксии.[35][38] За неколку месеци, контроверзноста за скалата на растојанието заврши: гама-изблиците биле вонгалактички настани кои потекнуваат од слаби галаксии на огромни растојанија. Следната година, GRB 980425 бил проследен во рок од еден ден од светла супернова (SN 1998bw), која се совпаѓала по местоположбата, што укажува на јасна врска помеѓу гама-изблиците и смртта на многу масивни ѕвезди. Овој изблик ја дал првата силна трага за природата на системите што ги создаваат гама-изблиците.[39]
Понови инструменти
уредиBeppoSAX функционирал до 2002 година, а Комптоновата гама-набљудувачница (со BATSE) излегла од орбитата во 2000 година. Сепак, револуцијата во проучувањето на изливите на гама-зраци го мотивирала развојот на голем број дополнителни инструменти дизајнирани специјално за истражување на природата на гама-изблиците, особено во најраните моменти по експлозијата. Првата таква мисија, Високо енергетскиот минлив истражувач 2 (HETE-2),[40] бил лансиран во 2000 година и функционираше до 2006 година, обезбедувајќи ги повеќето од главните откритија во овој период. Една од најуспешните вселенски мисии до сега, „Свифт“, била лансирана во 2004 година и од мај 2024 година сè уште е во функција.[41][42] Свифт е опремена со многу чувствителен забележувач на гама-зраци, како и вградени рендгенски и оптички телескопи, коишто можат брзо и автоматски да бидат придвижувани за да ја набљудуваат емисијата на проследениот отсјај, по избликот. Неодамна, Фермиевата мисија била лансирана со Надгледувачот на гама-изблици, кој забележува изблици со брзина од неколку стотици годишно, од кои некои се доволно светли за да бидат набљудувани при крајно високи енергии со Фермиевиот големоповршински телескоп. Во меѓувреме, на земја, биле изградени или модифицирани бројни оптички телескопи за да вградат програмска опрема за роботска контрола што веднаш реагира на сигналите испратени преку Мрежата за координати на гама-изблици. Ова им овозможува на телескопите брзо да бидат пренасочени кон гама-избликот, често во рок од неколку секунди по примањето на сигналот и додека самата емисија на гама-зраци е сè уште во тек.[43][44]
Новите случувања од 2000-тите вклучуваат препознавање на кратки изблици на гама-зраци како посебна класа (најверојатно од спојување на неутронски ѕвезди и не се поврзани со супернови), откривање на продолжена, непредвидлива активност на палење на рендгенски бранови должини кои траат многу минути по повеќето гама-изблици, и откривањето на најсјајните (GRB 080319B) и поранешните најоддалечени (GRB 090423) тела во универзумот.[45][46] Најоддалечениот познат гама-изблик, GRB 090429B, сега е најоддалеченото познато тело во универзумот.
Во октомври 2018 година, астрономите објавиле дека GRB 150101B (откриен во 2015 година) и GW170817, настан од гравитациски бран откриен во 2017 година (кој е поврзан со GRB170817A, изблик откриен 1,7 секунди од истиот механизам), можеби биле спојување на две неутронски ѕвезди. Сличностите помеѓу двата настани, во однос на емисиите на гама-зраци, оптички и рендгенски зраци, како и природата на поврзаните галаксии домаќини, се „впечатливи“, што наведува дека двата одделни настани може да бидат резултат на спојување на неутронски ѕвезди, и двете може да бидат килонова, што може да биде почеста во универзумот отколку што претходно било разбирано, според истражувачите.[47][48][49][50]
Највисоката енергетска светлина забележана од изблик на гама-зраци бил еден тераелектронволт, од GRB 190114C во 2019 година.[51] (Треба да биде забележано, ова е околу илјада пати помала енергија од највисоката енергетска светлина забележана од кој било извор, што е 1,4 петаелектронволти од 2021 година.[52])
Набљудувачот на променливи тела на вселената е мал рендгенски телескопски сателит за проучување на експлозиите на масивните ѕвезди преку анализа на добиените изблици на гама-зраци, развиен од НР Кинеската национална вселенска управа (КНВУ), Кинеската академија на науките (КАН) и францускиот Национален центар вселенски истражувања (НЦВИ/CNES),[53] лансирана на 22 јуни 2024 година (07:00:00 UTC).
Националната вселенска агенција на Република Кина, лансирала коцкест сателит наречен Надгледувач на минливи гама-зраци за следење на гама-изблици и други светли минливи гама-зраци со енергии кои се движат од 50 keV до 2 MeV во четвртото тримесечје на 2026 година.[54]
Класификација
уредиСветлинсите криви на гама-изблиците се исклучително разновидни и сложени.[55] Нема две светлински криви на гама-изблик кои се идентични,[56] со големи варијации забележани во речиси секое својство: времетраењето на забележливата емисија може да варира од милисекунди до десетици минути, може да има еден врв или неколку поединечни потпулси и поединелните врвови може да бидат симетрични или со брзо осветлување и многу бавно избледување. На некои изблици им претходи настан „претходник“, слаб изблик кој потоа (по неколку секунди до минути без никаква емисија) следи многу поинтензивна „вистинска“ епизода на изблик.[57] Светлинските криви на некои настани имаат крајно хаотични и сложени профили без речиси никакви забележливи обрасци.[32]
Иако некои светлински криви може грубо да бидат пресоздадени со користење на одредени поедноставени модели,[58] бил постигнат мал напредок во разбирањето на целосната забележана различност. Предложени се многу шеми за класификација, но тие често се засновани исклучиво на разликите во изгледот на светлинските криви и можеби не секогаш одразуваат вистинска физичка разлика во родоначалниците на експлозиите. Сепак, графиците на распространетоста на набљудуваното времетраење[nb 3] за голем број изблици на гама-зраци покажуваат јасна двомодалност, што укажува на постоење на две одделни населенија: „кратко“ население со просечно времетраење од околу 0,3 секунди и „долго“ население со просечно времетраење од околу 30 секунди.[8] Двете распространува се многу широки со значително преклопувачко подрачје во кој идентитетот на даден настан не е јасен само од времетраењето. Дополнителни часови надвор од овој двостепен систем се предложени и на набљудувачки и на теоретски основи.[59][60][61][62]
Кратки гама-изблици
уредиНастаните со времетраење од помалку од околу две секунди се класифицирани како кратки изблици на гама-зраци. Тие сочинуваат околу 30% од изблиците на гама-зраци, но до 2005 година, ниту еден последен сјај не било успешно откриен од ниту еден краток настан и малку било знаено за нивното потекло.[67] Оттогаш, откриени и локализирани биле неколку десетици кратки проследувачки отсјајувања на гама-изблици, од кои неколку се поврзани со региони со мало или никакво настанување на ѕвезди, како што се големите елиптични галаксии.[68][69][70] Ова ја исклучува врската со масивни ѕвезди, што потврдува дека кратките настани физички се разликуваат од долгите настани. Покрај тоа, немаше поврзаност со супернови.[71]
Вистинската природа на овие тела првично била непозната, а водечката хипотеза била дека тие потекнуваат од спојување на двојни неутронски ѕвезди или неутронска ѕвезда со црна дупка. Ваквите спојувања биле претпоставувани дека создаваат килонови,[72] и биле видени докази за килонова поврзана со GRB 130603B.[73][74] Просечното времетраење на овие настани од 0,2 секунди наведува (поради причинитоста) извор на многу мал физички пречник во ѕвездени услови; помалку од 0,2 светлосни секунди (околу 60.000 км – четири пати поголем од пречникот на Земјата). Набљудувањето од минути до часови на рендгенски блесоци по кратка гама-изблик е во согласност со мали честички на главно тело како неутронска ѕвезда првично проголтана од црна дупка за помалку од две секунди, проследено со неколку часа со помала енергија настаните, бидејќи преостанатите фрагменти од плимно нарушениот материјал на неутронската ѕвезда (нема повеќе неутрониум), остануваат во орбитата за да се извртуваат во црната дупка, во подолг временски период.[67] Мал дел од кратки изблици на гама-зраци веројатно се создадени од џиновски блесоци од меки гама-повторувачи во блиските галаксии.[75][76]
Потеклото на кратките гама-изблици во килонови било потврдено кога краткиот GRB 170817A бил откриен само 1,7 секунди по откривањето на гравитацискиот бран GW170817, што било сигнал од спојувањето на две неутронски ѕвезди.[10]
Долги гама-изблици
уредиПовеќето набљудувани настани (70%) имаат времетраење од повеќе од две секунди и се класифицирани како долги изблици на гама-зраци. Бидејќи овие настани го сочинуваат мнозинството од населението и затоа што имаат тежнеење да имаат најсветли проследувачки отсјајувања, тие биле набљудувани со многу поголеми подробности од нивните кратки колеги. Речиси секој добро проучен долг изблик на гама-зраци е поврзан со галаксија со брзо настанување на ѕвезди, а во многу случаи и со супернова со колапс на јадрото, недвосмислено поврзувајќи ги долгите гама-изблици со смртта на масивни ѕвезди.[71][77] Долгите набљудувања на проследениот отсјај на гама-изблиците, при високо црвено поместување, исто така се доследни со гама-избликот што потекнува од подрачја каде настануваат ѕвезди.[78]
Во декември 2022 година, астрономите го пријавиле набљудувањето на GRB 211211A, првиот доказ за долгиот гама-изблик создаден од спојување на неутронска ѕвезда со 51s.[79][80][81] GRB 191019A (2019)[82] и GRB 230307A (2023).[83][84] Со околу 64s и 35s, соодветно, исто така е тврдено дека припаѓаат на оваа класа на долги гама-изблици од спојувања на неутронски ѕвезди.[85]
Крајнодолги гама-зраци изблици
уредиОвие настани се на крајот на долготрајната распространетост на гама-изблици, која трае повеќе од 10.000 секунди. Предложено е тие да образуваат посебна класа, предизвикана од колапсот на сина суперџиновска ѕвезда,[86] настан за нарушување на плимата и осеката[87][88] или новонастана магнетар.[87][89] Само мал број биле идентификувани до денес, нивната главна особина е времетраењето на емисијата на гама-зраци. Најпроучуваните крајнодолги настани се GRB 101225A и GRB 111209A.[88][90][91] Ниската стапка на откривање може да биде резултат на малата чувствителност на тековните забележувачи на настани со долготрајност, наместо како одраз на нивната вистинска честота.[88] Една студија од 2013 година,[92] од друга страна, покажува дека постоечките докази за посебно население на крајнодолги гама-изблици со нов тип на родоначалник се неубедливи и потребни се дополнителни набљудувања со повеќе бранови должини за да биде донесен поцврст заклучок.
Енергетика
уредиИзблиците на гама-зраците се многу светли како што се гледани од Земјата и покрај нивните вообичаено огромни растојанија. Просечниот долг гама-изблик има булометриски тек споредлив со светла ѕвезда на нашата галаксија и покрај растојанието од милијарди светлосни години (во споредба со неколку десетици светлосни години за повеќето видливи ѕвезди). Поголемиот дел од оваа енергија се ослободува во гама-зраците, иако некои гама-изблици имаат и крајно светлечки оптички сродници. GRB 080319B, на пример, бил придружуван од оптички пандан кој достигнал врв со видлива светлинска величина од 5,8,[93] споредлива со онаа на најтемните ѕвезди со голо око и покрај растојанието на избликот од 7,5 милијарди светлосни години. Оваа комбинација на осветленост и растојание подразбира исклучително енергетски извор. Претпоставувајќи дека експлозијата на гама-зраците е сферична, излезната енергија на GRB 080319B би била во рамките на фактор два од енергијата на масата на одмор на Сонцето (енергијата што ќе се ослободи доколку Сонцето целосно да се претвори во зрачење).[45]
Сметано е дека гама-изблиците се високо насочени експлозии, при што најголемиот дел од енергијата на експлозијата се усогласува во тесен млаз.[94][95] Млазовите на извлиците на гама-зраци се крајнорелативистички и се најрелативистичките млазови во универзумот.[96][97] Материјата во млазовите на гама-изблици, исто така, може да стане суперлуминална, или поголема од брзината на светлината во медиумот на млазот, при што има и ефекти на временска повратност.[98][99][100] Приближната аголна ширина на млазот (т.е. степенот на ширење на зракот) може да биде проценета директно со набљудување на ахроматските „млазни прекини“ во светлинските криви на проследениот отсјај: време по кое полека распаѓачкиот проследен отсјај почнува брзо да забледува додека млазот забавува и повеќе не може да го емитува своето зрачење толку делотворно.[101][102] Набљудувањата наведуваат значителна варијација во аголот на млазот помеѓу 2 и 20 степени.[103]
Бидејќи нивната енергија е силно насочена, очекувано е гама-зраците што ги емитираат повеќето излици да ја пропуштат Земјата и никогаш да не бидат откриени. Кога избликот на гама-зраци е насочен кон Земјата, насочувањето на неговата енергија по релативно тесен зрак предизвикува изливот да изгледа многу посветол отколку што би бил доколку неговата енергија е емитувана сферично. Вкупната енергија на вообичаени изблици на гама-зраци е проценета на 3 × 1044 Ј, – што е поголемо од вкупната енергија (1044 Ј) на обични супернови (тип Ia, Ibc, II),[103] со изблици на гама-зраци, исто така, помоќни од вообичаената супернова.[104] Забележани биле многу светли супернови кои придружуваат неколку од најблиските гама-изблици.[39] Понатамошна поддршка за фокусирање на излезот на гама-изблиците доаѓа од набљудувањата на силните асиметрии во спектрите на блиските супернови од типот Ic[105] и од радионабљудувањата направени долго по изблиците кога нивните млазови повеќе не се релативистички.[106]
Сепак, конкурентен модел, двоѕвездено насочен модел на хипернова, развиен од Ремо Руфини и други во ICRANet, ги прифаќа крајните изотропни енергетски збирови како вистинити, без потреба од поправка за зрачењето.[107][108] Тие исто така забележуваат дека крајните агли на зрачењето во стандардниот модел „огнена топка“ никогаш не биле физички потврдени.[109]
Со откривањето на GRB 190114C, на астрономите можеби им недостасувала половина од вкупната енергија што ја произведуваат изливите на гама-зраци,[110] со Констанцја Саталецка, астрофизичар во Германскиот електронски синхротрон, изјавувајќи дека „Нашите мерења покажуваат дека енергијата ослободена во гама-зраците со многу висока енергија се споредливи со количеството зрачено од сите пониски енергии земени заедно“.[111]
Се чини дека кратките (временско траење) гама-изблици доаѓаат од население со пониско црвено поместување (т.е. помалку оддалечени) и се помалку светли од долгите гама-изблици.[112] Степенот на зрачењето во кратки изблици не е точно измерен, но како население тие се веројатно помалку усогласени од долгите гама-изблици[113] или можеби воопшто не се усогласени во некои случаи.[114]
Родоначалници
уредиПоради огромните растојанија на повеќето извори на гама-изблици од Земјата, идентификацијата на родоначалниците, системите што ги произведуваат овие експлозии, е предизвик. Поврзаноста на некои долги гама-изблици со супернови и фактот дека нивните галаксии домаќини брзо создаваат ѕвезди, нудат многу силен доказ дека долгите изблици на гама-зраци се поврзани со масивни ѕвезди. Најшироко прифатениот механизам за потеклото на долготрајните гама-изблици е моделот на колапсар,[115] во кој јадрото на крајно масивна, ниска металична, брзо вртежна ѕвезда кој пропаѓа во црна дупка во последните фази од нејзината еволуција. Материјата во близина на јадрото на ѕвездата паѓа кон средината и се врти во насобирачки диск со висока густина. Падот на овој материјал во црна дупка истерува пар релативистички млазови долж вртежната оска, кои удираат низ ѕвездената обвивка и на крајот ја пробиваат ѕвездената површина и зрачат како гама-зраци. Некои алтернативни модели ја заменуваат црната дупка со новонастанат магнетар,[116][117] иако повеќето други аспекти на моделот (колапс на јадрото на масивна ѕвезда и настанување на релативистички млазови) се исти.
Сепак, нов модел кој добил поддршка и бил развиен од италијанскиот астрофизичар Ремо Руфини и други научници од ICRANet е оној на двоѕвездено тематскиот модел на хипернова.[118][119][120] Моделот успева и го подобрува и моделот на огнен надворешен слој и парадигмата за индуциран гравитациски колапс (ИГК) предложена претходно, и ги објаснува сите аспекти на изблиците на гама-зраци.[107] Моделот предвидува долги изблици на гама-зраци како што се случуваат во двојни системи со јаглеродно-кислородно јадро и придружна неутронска ѕвезда или црна дупка.[107] Понатаму, енергијата на гама-изблиците во моделот е изотропна наместо колимирана.[107] Творците на моделот ги забележале бројните недостатоци на стандардниот модел на „огнена топка“ како мотивација за развој на моделот, како што е значително различната енергија за изблиците на супернова и гама-зраци, како и фактот дека постоењето на крајно тесни агли на зрачењето никогаш не биле набљудувачки потврдени.[109]
Најблиските аналози во галаксијата Млечен Пат на ѕвездите кои произведуваат долги изблици на гама-зраци се веројатно Волф-Рајеовите ѕвезди, крајно жешки и масивни ѕвезди, кои го отфрлиле најголемиот дел или целата своја водородна обвивка. Ета Кобилица, Апеп и WR 104 се наведени како можни идни родоначалници на гама-родоначалници.[121] Не е јасно дали некоја ѕвезда во Млечниот Пат има соодветни особини за да произведе изблик на гама-зраци.[122]
Моделот со масивна ѕвезда веројатно не ги објаснува сите видови на изблик на гама-зраци. Постојат силни докази дека некои краткотрајни изблици на гама-зраци се случуваат во системи без настанување на ѕвезди и без масивни ѕвезди, како што се елиптични галаксии и галактички ореоли.[112] Претпочитаната хипотеза за потеклото на повеќето кратки изблици на гама-зраци е спојување на двоен систем составен од две неутронски ѕвезди. Според овој модел, двете ѕвезди бавно се вртат една кон друга бидејќи гравитациското зрачење ослободува енергија[123][124] додека плимните сили ненадејно не ги распарчат неутронските ѕвезди и тие се рушат во една црна дупка. Влевањето на материјата во новата црна дупка создава насобирачки диск и ослободува излив на енергија, аналогно на моделот на колапсар. Предложени биле и бројни други модели за да бидат објаснети кратките изблици на гама-зраци, вклучувајќи го спојувањето на неутронска ѕвезда и црна дупка, колапсот на неутронска ѕвезда предизвикан од насобирање или испарувањето на првобитните црни дупки.[125][126][127][128]
Алтернативно објаснување предложено од Фридварт Винтерберг е дека во текот на гравитацискиот колапс и при достигнувањето на хоризонтот на настани на црната дупка, целата материја се распаѓа во изблик на гама-зрачење.[129]
Настани за плимни нарушување
уредиОваа класа на настани слични на гама-изблици првпат била откриена преку откривање на Свифт J1644+57 (првично класифициран како GRB 110328A) од страна на Свифтовата гама-рендгенска изблична мисија на 28 март 2011 година. Овој настан имал времетраење на гама-зраците од околу 2 дена, многу подолго дури и од крајнодолгите гама-изблици, и бил откриен на многу честоти со месеци и години потоа. Се случило во средиштето на една мала елиптична галаксија со црвено поместување, на 3,8 милијарди светлосни години од нас. Овој настан е прифатен како настан на плимно нарушување, каде што ѕвезда талка премногу блиску до супермасивна црна дупка, распарчувајќи ја ѕвездата. Во случајот со Свифт J1644+57, бил лансиран астрофизички млаз кој патувал со брзина блиску до светлината и траел приближно 1,5 година пред да се исклучи.[130]
Од 2011 година, биле откриени само 4 млазни настани на плимно нарушување, од кои 3 биле откриени во гама-зраци (вклучувајќи го и Свифт J1644+57).[131] Проценувано е дека само 1% од сите настани на плимно нарушување се млазни настани.[131]
Механизми за емисија
уредиСредствата со кои гама-изблиците ја претвораат енергијата во зрачење остануваат слабо разбрани, а од 2010 година сè уште немало општо прифатен модел за тоа како се случува оваа постапка.[132] Секој успешен модел на емисија на гама-облик мора да ја објасни физичката постапка за создавање на емисија на гама-зраци што одговара на набљудуваната разновидност на светлински криви, спектри и други особини.[133] Посебно предизвикувачка е потребата да биде објаснета многу високата ефикасност што е заклучувана од некои експлозии: некои изблици на гама-зраци може да претворат дури половина (или повеќе) од енергијата на експлозијата во гама-зраци.[134] Раните набљудувања на светлите оптички сродници на GRB 990123 и на GRB 080319B, чии оптички светлински криви биле екстраполации на спектрите на светлината на гама-зраците,[93][135] наведуваат дека инверзното Комптоново расејување може да биде доминантна постапка во некои настани. Во овој модел, претходно постоечките фотони со ниска енергија се расфрлани со релативистички електрони во рамките на експлозијата, зголемувајќи ја нивната енергија за голем фактор и преобразувајќи ги во гама-зраци.[136]
Природата на емисиите на проследениот отсјај со подолга бранова должина (која се движи од рендгенски бран до радиобран) што ги следи изблиците на гама-зраци е подобро разбрана. Секоја енергија ослободена од експлозијата која не е зрачена во самиот изблик има облик на материја или енергија што се движи нанадвор со речиси брзина на светлината. Како што оваа материја се судира со околниот меѓуѕвезден гас, таа создава релативистички ударен бран кој потоа се шири напред во меѓуѕвездениот простор. Вториот ударен бран, обратниот удар, може да биде проширен назад во исфрлената материја. Крајно енергетските електрони во ударниот бран се забрзуваат со силни месни магнетни полиња и зрачат како синхротронска емисија низ поголемиот дел од електромагнетниот спектар.[137][138] Овој модел воглавно бил успешен во моделирањето на однесувањето на многу забележани последователни блескави во доцните времиња (обично, неколку часа до денови по експлозијата), иако има потешкотии да се објаснат сите особини на проследениот отсјај многу кратко време по изблиците на гама-зраците.[139]
Стапка на појава и потенцијални ефекти врз животот
уредиИзблиците на гама-зраци може да има штетни или разорувачки ефекти врз животот. Со оглед на универзумот како целина, најбезбедните средини за живот слични на оние на Земјата се подрачјата со најниска густина во периферијата на големите галаксии. Нашето знаење за видовите галаксии и нивната распространетост наведува дека животот каков што го знаеме може да постои само во околу 10% од сите галаксии. Понатаму, галаксиите со црвено поместување, z, повисоко од 0,5 се несоодветни за живот каков што го знаеме, поради нивната поголема стапка на гама-изблици и нивната ѕвездена збиеност.[141][142]
Сите гама-изблици забележани до денес се појавиле надвор од галаксијата Млечен Пат и биле безопасни за Земјата. Меѓутоа, ако еден гама-изблик се случи во рамките на Млечниот Пат во рок од 5.000 до 8.000 светлосни години[143] и неговата емисија била зрачена директно кон Земјата, ефектите би можеле да бидат штетни и потенцијално разорни за нејзините екосистеми. Во моментов, сателитите кои кружат, забележуваат во просек приближно еден гама-изблик дневно. Најблискиот забележан гама-изблик, заклучно со март 2014 година, бил GRB 980425, сместен на 40 мегапарсеци (130,000,000 светлосни години)[144] далеку (z =0,0085) во џуџеста галаксија од типот SBc.[145] GRB 980425 бил далеку помалку енергичен од просечниот гама-изблик и бил поврзан со суперновата од типот Ib, SN 1998bw.[146]
Тешко е да биде проценета точната стапка со која се појавуваат гама-изблиците; за галаксија со приближно иста големина како Млечниот Пат, проценките за очекуваната стапка (за долготрајни гама-изблици) може да се движат од една експлозија на секои 10.000 години, до еден изблик на секои 1.000.000 години.[147] Само мал процент од нив ќе зрачат кон Земјата. Проценките за стапката на појава на краткотрајни гама-изблици се уште понеизвесни поради непознатиот степен на колимација, но веројатно се споредливи.[148]
Бидејќи е сметано дека гама-изблиците вклучуваат зрачна емисија по два млазници во спротивставени насоки, само планетите на патот на овие млазници би биле подложени на високоенергетско гама-зрачење.[149] Еден гама-изблик би можел да испари се што е во неговите зраци на околу 200 светлосни години.[150][151]
Иако блиските гама-изблици кои ја погодуваат Земјата со разорувачки „туш“ од гама-зраци се само хипотетички настани, забележано е дека постапките на висока енергија низ галаксијата влијаат на атмосферата на Земјата.[152]
Ефекти врз Земјата
уредиАтмосферата на Земјата е многу ефикасна во примањето на високоенергетското електромагнетно зрачење, како што се рендгенските зраци и гама-зраците, така што овие типови на зрачење нема да достигнат никакви опасни нивоа на површината за време на самиот настан на изблик. Непосредниот ефект врз животот на Земјата од еден гама-изблик во рок од неколку килопарсеци би бил само кратко зголемување на ултравиолетовото зрачење на нивото на земјата, кое ќе трае од помалку од една секунда до десетици секунди. Ова ултравиолетово зрачење потенцијално би можело да достигне опасни нивоа во зависност од точната природа и оддалеченоста на избликот, но се чини малку веројатно дека ќе може да предизвика светска катастрофа за животот на Земјата.[153][154]
Поопасни се долгорочните ефекти од блискиот изблик. Гама-зраците предизвикуваат хемиски реакции во атмосферата кои вклучуваат молекули на кислород и азот, создавајќи прво азотен оксид, а потоа гасот азот диоксид. Азотните оксиди предизвикуваат опасни ефекти на три нивоа. Прво, тие го осиромашуваат озонот, при што моделите покажуваат можно светско намалување од 25–35%, со дури 75% на одредени места, ефект кој би траел со години. Ова намалување е доволно за да предизвика опасно покачен ултравиолетов показател на површината. Второ, азотните оксиди предизвикуваат фотохемиски смог, кој го затемнува небото и блокира делови од спектарот на сончевата светлина. Ова би влијаело на фотосинтезата, но моделите покажуваат само околу 1% намалување на вкупниот спектар на сончева светлина, што трае неколку години. Сепак, смогот може потенцијално да предизвика ефект на ладење на климата на Земјата, предизвикувајќи „космичка зима“ (слична на ударна зима, но без удар), но само ако се случи истовремено со светска климатска нестабилност. Трето, покачените нивоа на азот диоксид во атмосферата ќе поминат и ќе произведат кисели дождови. Азотната киселина е токсична за различни организми, вклучувајќи го и животот на водоземците, но моделите предвидуваат дека нема да достигне нивоа што би предизвикале сериозен светски ефект. Нитратите всушност може да бидат од корист за некои растенија.[153][154]
Сè на сè, еден гама-изблик во рок од неколку килопарсеци, со својата енергија насочена кон Земјата, најмногу ќе го оштети животот со подигање на ултравиолетовите нивоа за време на самиот изблик и неколку години потоа. Моделите покажуваат дека разорните ефекти од ова зголемување може да предизвикаат до 16 пати повеќе од нормалното ниво на оштетување на ДНК. Покажано е дека е тешко да биде проценета сигурна проценка на последиците од ова врз копнениот екосистем, поради неизвесноста во биолошкото поле и лабораториските податоци.[153][154]
Хипотезни ефекти на Земјата во минатото
уредиИма многу добри шанси (но не и сигурност) дека барем еден смртоносен гама-изблик се случил во текот на изминатите 5 милијарди години доволно блиску до Земјата за значително да го оштети животот. Има 50% шанси дека таков смртоносен гама-изблик се случил на два килопарсеци од Земјата во текот на последните 500 милиони години, предизвикувајќи еден од главните настани за масовно изумирање.[16][155]
Главниот Ордовичко-силурискиот настан на изумирање пред 450 милиони години можеби бил предизвикан од гама-изблик.[14][156] Проценките наведуваат дека приближно 20-60% од вкупната фитопланктонска биомаса во ордовициските океани би исчезнала во гама-изблик, бидејќи океаните биле главно олиготрофни и бистри.[15] Доцноордовичките видови трилобити кои поминале делови од својот живот во планктонскиот слој во близина на површината на океанот биле многу потешко погодени од жителите на длабоките води, кои имале тежнеење да останат во прилично ограничени области. Ова е во спротивност со вообичаениот модел на настани на истребување, каде што видовите со пошироко распространето население обично поминуваат подобро. Можно објаснување е дека трилобитите кои остануваат во длабока вода би биле повеќе заштитени од зголеменото ултравиолетово зрачење поврзано со гама-изблик. Исто така во прилог на оваа хипотеза е и фактот дека за време на доцниот ордовик, видовите школки кои живееле во вдлабнатини, имале помала веројатност да исчезнат отколку школките што живееле на површината.[13]
Направен е случај дека скокот од јаглерод-14 774-775 бил резултат на краток гама-изблик,[157][158] иако многу силен сончев блесок е друга можност.[159]
Кандидати за гама-изблици во Млечниот Пат
уредиНе се забележани изблици на гама-зраци од нашата сопствена галаксија, Млечниот Пат,[161] и прашањето дали некогаш се случило останува нерешено. Во светлината на еволуираното разбирање за изблиците на гама-зраци и нивните родоначалници, научната книжевност евидентира сè поголем број месни, минати и идни кандидати за гама-изблици. Долготрајните гама-изблици се поврзани со суперсјајни супернови или хипернови, а повеќето сјајни сини променливи ѕвезди и Волф-Рајеовите ѕвезди кои брзо се вртат, се сметани дека го завршуваат својот животен циклус во супернови со колапс на јадрото со поврзан долготраен гама-изблик. Меѓутоа, знаењето за гама-изблиците од галаксиите сиромашни со метал од поранешните епохи на еволуцијата на универзумот, и невозможно е директно да биде екстраполирано за да бидат опфатени повеќе еволуирани галаксии и ѕвездени средини со повисока металичност, како што е Млечниот Пат.[162][163][164]
Поврзано
уреди
Забелешки
уреди- ↑ Значаен исклучок е настанот од 5 март во 1979 година, крајно светла експлозија која била успешно локализирана во остаток од суперновата N49 во Големиот Магеланов Облак. Овој настан е толкуван како магнетарен џиновски блесок, повеќе поврзано со мекиот гама-повторувачки блесоци отколку „вистинските“ гама-изблици.
- ↑ Гама-изблиците се именувани според датумот на кој се откриени: првите две цифри се годината, по што следат двоцифрениот месец и двоцифрениот ден и буквата со редоследот по кој биле откриени во тој ден. Буквата „A“ е додадена на името за првиот идентификуван рафал, „B“ за вториот и така натаму. За изблици пред 2010 година, оваа буква била приложена само ако се случило повеќе од еден изблик тој ден.
- ↑ Времетраењето на избликот обично е мерено со T90, времетраењето на периодот кој 90 проценти од избличната енергија е емитувана. Неодамна, некои инаку „кратки“ гама-изблици се покажале дека се проследени со втора, многу подолга епизода на емисија која кога е вклучена во светлинската крива на избликот резултира со времетраење на T90 до неколку минути: овие настани се само кратки во буквална смисла кога овој составен дел е исклучен.
Наводи
уреди- ↑ Gehrels, Neil; Mészáros, Péter (2012-08-24). „Gamma-Ray Bursts“. Science (англиски). 337 (6097): 932–936. arXiv:1208.6522. Bibcode:2012Sci...337..932G. doi:10.1126/science.1216793. ISSN 0036-8075. PMID 22923573.
- ↑ Misra, Kuntal; Ghosh, Ankur; Resmi, L. (2023). „The Detection of Very High Energy Photons in Gamma Ray Bursts“ (PDF). Physics News. Tata Institute of Fundamental Research. 53: 42–45.
- ↑ NASA Universe Web Team (2023-06-09). „Gamma-Ray Bursts: Black Hole Birth Announcements“. science.nasa.gov (англиски). Посетено на 10 септември 2024.
- ↑ Reddy, Francis (2023-03-28). „NASA Missions Study What May Be a 1-In-10,000-Year Gamma-ray Burst - NASA“. nasa.gov (англиски). Посетено на 10 септември 2024.
- ↑ „Gamma Rays“. NASA. Архивирано од изворникот на 2012-05-02.
- ↑ Zhang, Bing (2018). The Physics of Gamma-Ray Bursts (англиски). Cambridge University Press. стр. xv, 2. ISBN 978-1-107-02761-9.
- ↑ Atkinson, Nancy (2013-04-16). „New Kind of Gamma Ray Burst is Ultra Long-Lasting“. Universe Today (англиски). Посетено на 10 септември 2024.
- ↑ 8,0 8,1 Kouveliotou 1994
- ↑ Vedrenne & Atteia 2009
- ↑ 10,0 10,1 Abbott, B. P. (16 октомври 2017). „GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral“. Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
- ↑ Arizona State University (26 јули 2017). „Massive star's dying blast caught by rapid-response telescopes“. PhysOrg. Посетено на 10 септември 2024.
- ↑ Podsiadlowski 2004
- ↑ 13,0 13,1 Melott 2004
- ↑ 14,0 14,1 Melott, A.L.; Thomas, B.C. (2009). „Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage“. Paleobiology. 35 (3): 311–320. arXiv:0809.0899. Bibcode:2009Pbio...35..311M. doi:10.1666/0094-8373-35.3.311.
- ↑ 15,0 15,1 Rodríguez-López, Lien; Cardenas, Rolando; González-Rodríguez, Lisdelys; Guimarais, Mayrene; Horvath, Jorge (24 јануари 2021). „Influence of a galactic gamma ray burst on ocean plankton“. Astronomical Notes. 342 (1–2): 45–48. arXiv:2011.08433. Bibcode:2021AN....342...45R. doi:10.1002/asna.202113878. Посетено на 10 септември 2024.
- ↑ 16,0 16,1 Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P. (28 февруари 2005). „Terrestrial Ozone Depletion due to a Milky Way Gamma-Ray Burst“. The Astrophysical Journal. 622 (2): L153–L156. arXiv:astro-ph/0411284. Bibcode:2005ApJ...622L.153T. doi:10.1086/429799. Посетено на 10 септември 2024.
- ↑ 17,0 17,1 Klebesadel R.W.; Strong I.B.; Olson R.A. (1973). „Observations of Gamma-Ray Bursts of Cosmic Origin“. Astrophysical Journal Letters. 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
- ↑ Hurley 2003
- ↑ Bonnell, JT; Klebesadel, RW (1996). „A brief history of the discovery of cosmic gamma-ray bursts“. AIP Conference Proceedings. 384 (1): 977–980. Bibcode:1996AIPC..384..977B. doi:10.1063/1.51630.
- ↑ 20,0 20,1 Schilling 2002, стр. 12–16
- ↑ Klebesadel, R. W.; et, al (1973). „Observations of Gamma-Ray Bursts of Cosmic Origin“. Astrophysical Journal. 182: 85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
- ↑ Bonnell, J. T.; Klebesadel, R. W. (1996). „A brief history of the discovery of cosmic gamma-ray bursts“. AIP Conference Proceedings. 384: 979. Bibcode:1996AIPC..384..977B. doi:10.1063/1.51630.
- ↑ Meegan 1992
- ↑ 24,0 24,1 Vedrenne & Atteia 2009, стр. 16–40
- ↑ Schilling 2002, стр. 36–37
- ↑ Paczyński 1999, стр. 6
- ↑ Piran 1992
- ↑ Lamb 1995
- ↑ Hurley 1986, стр. 33
- ↑ Pedersen 1987
- ↑ Hurley 1992
- ↑ 32,0 32,1 Fishman & Meegan 1995
- ↑ Paczynski 1993
- ↑ van Paradijs 1997
- ↑ 35,0 35,1 Vedrenne & Atteia 2009, стр. 90–93
- ↑ Schilling 2002, стр. 102
- ↑ Reichart 1995
- ↑ Schilling 2002, стр. 118–123
- ↑ 39,0 39,1 Galama 1998
- ↑ Ricker 2003
- ↑ McCray 2008
- ↑ Gehrels 2004
- ↑ Akerlof 2003
- ↑ Akerlof 1999
- ↑ 45,0 45,1 Bloom 2009
- ↑ Reddy 2009
- ↑ (16 октомври 2018). "All in the family: Kin of gravitational wave source discovered – New observations suggest that kilonovae – immense cosmic explosions that produce silver, gold and platinum – may be more common than thought". Соопштение за печат. Архивирано на 16 октомври 2018 г.
- ↑ Troja, E.; и др. (16 октомври 2018). „A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341“. Nature Communications. 9: 4089. arXiv:1806.10624. Bibcode:2018NatCo...9.4089T. doi:10.1038/s41467-018-06558-7. PMC 6191439. PMID 30327476.
- ↑ Mohon, Lee (16 октомври 2018). „GRB 150101B: A Distant Cousin to GW170817“. NASA. Посетено на 10 септември 2024.
- ↑ Wall, Mike (17 октомври 2018). „Powerful Cosmic Flash Is Likely Another Neutron-Star Merger“. Space.com. Посетено на 10 септември 2024.
- ↑ Veres, P; и др. (20 ноември 2019). „Observation of inverse Compton emission from a long γ-ray burst“. Nature. 575 (7783): 459–463. arXiv:2006.07251. Bibcode:2019Natur.575..459M. doi:10.1038/s41586-019-1754-6. PMID 31748725.
- ↑ Conover, Emily (2021-05-21). „Record-breaking light has more than a quadrillion electron volts of energy“. Science News (англиски). Посетено на 10 септември 2024.
- ↑ „Lobster-inspired £3.8m super lightweight mirror chosen for Chinese-French space mission“. Универзитет во Лестер. 26 октомври 2015. Архивирано од изворникот на 28 јануари 2021. Посетено на 10 септември. Проверете ги датумските вредности во:
|accessdate=
(help) - ↑ Chang, Hsiang-Kuang; Lin, Chi-Hsun; Tsao, Che-Chih; Chu, Che-Yen; Yang, Shun-Chia; Huang, Chien-You; Wang, Chao-Hsi; Su, Tze-Hsiang; Chung, Yun-Hsin (2022-01-15). „The Gamma-ray Transients Monitor (GTM) on board Formosat-8B and its GRB detection efficiency“. Advances in Space Research. 69 (2): 1249–1255. Bibcode:2022AdSpR..69.1249C. doi:10.1016/j.asr.2021.10.044. ISSN 0273-1177.
- ↑ Katz 2002, стр. 37
- ↑ Marani 1997
- ↑ Lazatti 2005
- ↑ Simić 2005
- ↑ Horvath 1998
- ↑ Hakkila 2003
- ↑ Chattopadhyay 2007
- ↑ Virgili 2009
- ↑ „Hubble captures infrared glow of a kilonova blast“. Image Gallery. ESA/Hubble. 5 август 2013. Посетено на 10 септември 2024.
- ↑ Laskar, Tanmoy; Escorial, Alicia Rouco; Schroeder, Genevieve; Fong, Wen-fai; Berger, Edo; Veres, Péter; Bhandari, Shivani; Rastinejad, Jillian; Kilpatrick, Charles D. (2022-08-01). „The First Short GRB Millimeter Afterglow: The Wide-angled Jet of the Extremely Energetic SGRB 211106A“. The Astrophysical Journal Letters. 935 (1): L11. arXiv:2205.03419. Bibcode:2022ApJ...935L..11L. doi:10.3847/2041-8213/ac8421.
- ↑ „Out With a Bang: Explosive Neutron Star Merger Captured for the First Time in Millimeter Light“. National Radio Astronomy Observatory (англиски). Посетено на 10 септември 2024.
- ↑ „Explosive neutron star merger captured for first time in millimeter light“. news.northwestern.edu (англиски). Посетено на 10 септември 2024.
- ↑ 67,0 67,1 In a Flash NASA Helps Solve 35-year-old Cosmic Mystery. NASA (2005-10-05) The 30% figure is given here, as well as afterglow discussion.
- ↑ Bloom 2006
- ↑ Hjorth 2005
- ↑ Gehrels 2005
- ↑ 71,0 71,1 Woosley & Bloom 2006
- ↑ Li, Li-Xin; Paczyński, Bohdan (1998-09-21). „Transient Events from Neutron Star Mergers“. The Astrophysical Journal (англиски). 507 (1): L59. arXiv:astro-ph/9807272. Bibcode:1998ApJ...507L..59L. doi:10.1086/311680. ISSN 0004-637X.
- ↑ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. (2013). „A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B“. Nature. 500 (7464): 547–549. arXiv:1306.4971. Bibcode:2013Natur.500..547T. doi:10.1038/nature12505. PMID 23912055.
- ↑ Gugliucci, Nicole (7 август 2013). „Kilonova Alert! Hubble Solves Gamma Ray Burst Mystery“. Discovery News. Архивирано од изворникот на 3 март 2016. Посетено на 10 септември 2024.
- ↑ Frederiks 2008
- ↑ Hurley 2005
- ↑ Hjorth, Jens; Sollerman, Jesper; Møller, Palle; Fynbo, Johan P. U.; Woosley, Stan E.; Kouveliotou, Chryssa; Tanvir, Nial R.; Greiner, Jochen; Andersen, Michael I. (2003-06-19). „A very energetic supernova associated with the γ-ray burst of 29 March 2003“. Nature (англиски). 423 (6942): 847–850. arXiv:astro-ph/0306347. Bibcode:2003Natur.423..847H. doi:10.1038/nature01750. ISSN 0028-0836. PMID 12815425.
- ↑ Pontzen et al. 2010
- ↑ Rastinejad, Jillian C.; Gompertz, Benjamin P.; Levan, Andrew J.; Fong, Wen-fai; Nicholl, Matt; Lamb, Gavin P.; Malesani, Daniele B.; Nugent, Anya E.; Oates, Samantha R. (2022-12-08). „A kilonova following a long-duration gamma-ray burst at 350 Mpc“. Nature (англиски). 612 (7939): 223–227. arXiv:2204.10864. Bibcode:2022Natur.612..223R. doi:10.1038/s41586-022-05390-w. ISSN 0028-0836. PMID 36477128 Проверете ја вредноста
|pmid=
(help). - ↑ Troja, E.; Fryer, C. L.; O’Connor, B.; Ryan, G.; Dichiara, S.; Kumar, A.; Ito, N.; Gupta, R.; Wollaeger, R. T. (2022-12-08). „A nearby long gamma-ray burst from a merger of compact objects“. Nature (англиски). 612 (7939): 228–231. arXiv:2209.03363. Bibcode:2022Natur.612..228T. doi:10.1038/s41586-022-05327-3. ISSN 0028-0836. PMC 9729102 Проверете ја вредноста
|pmc=
(help). PMID 36477127 Проверете ја вредноста|pmid=
(help). - ↑ „Kilonova Discovery Challenges our Understanding of Gamma-Ray Bursts“. Gemini Observatory (англиски). 2022-12-07. Посетено на 10 септември 2024.
- ↑ Levan, Andrew J.; Malesani, Daniele B.; Gompertz, Benjamin P.; Nugent, Anya E.; Nicholl, Matt; Oates, Samantha R.; Perley, Daniel A.; Rastinejad, Jillian; Metzger, Brian D. (2023-06-22). „A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy“. Nature Astronomy (англиски). 7 (8): 976–985. arXiv:2303.12912. Bibcode:2023NatAs...7..976L. doi:10.1038/s41550-023-01998-8. ISSN 2397-3366.
- ↑ „GCN - Circulars - 33410: Solar Orbiter STIX observation of GRB 230307A“.
- ↑ „GCN - Circulars - 33412: GRB 230307A: AGILE/MCAL detection“.
- ↑ Wodd, Charlie (11 декември 2023). „Extra-Long Blasts Challenge Our Theories of Cosmic Cataclysms“. Quanta Magazine.
- ↑ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J (2013). „The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?“. The Astrophysical Journal. 766 (1): 30. arXiv:1212.2392. Bibcode:2013ApJ...766...30G. doi:10.1088/0004-637X/766/1/30.
- ↑ 87,0 87,1 Greiner, Jochen; Mazzali, Paolo A.; Kann, D. Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E., Felipe; Rossi, Andrea; Klose, Sylvio (2015-07-08). „A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst“. Nature. 523 (7559): 189–192. arXiv:1509.03279. Bibcode:2015Natur.523..189G. doi:10.1038/nature14579. PMID 26156372.CS1-одржување: display-автори (link)
- ↑ 88,0 88,1 88,2 Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R. (2014). „A new population of ultra-long duration gamma-ray bursts“. The Astrophysical Journal. 781 (1): 13. arXiv:1302.2352. Bibcode:2014ApJ...781...13L. doi:10.1088/0004-637x/781/1/13.CS1-одржување: display-автори (link)
- ↑ Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi (2016-12-12). „Are Ultra-Long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?“. The Astrophysical Journal. 833 (1): 110. arXiv:1608.02938. Bibcode:2016ApJ...833..110I. doi:10.3847/1538-4357/833/1/110.
- ↑ Boer, Michel; Gendre, Bruce; Stratta, Giulia (2013). „Are Ultra-long Gamma-Ray Bursts different?“. The Astrophysical Journal. 800 (1): 16. arXiv:1310.4944. Bibcode:2015ApJ...800...16B. doi:10.1088/0004-637X/800/1/16.
- ↑ Virgili, F. J.; Mundell, C. G.; Pal'Shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R. (2013). „Grb 091024A and the Nature of Ultra-Long Gamma-Ray Bursts“. The Astrophysical Journal. 778 (1): 54. arXiv:1310.0313. Bibcode:2013ApJ...778...54V. doi:10.1088/0004-637X/778/1/54.CS1-одржување: display-автори (link)
- ↑ Zhang, Bin-Bin; Zhang, Bing; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S. (2014). „How Long does a Burst Burst?“. The Astrophysical Journal. 787 (1): 66. arXiv:1310.2540. Bibcode:2014ApJ...787...66Z. doi:10.1088/0004-637X/787/1/66.
- ↑ 93,0 93,1 Racusin 2008
- ↑ Rykoff 2009
- ↑ Abdo 2009
- ↑ Dereli-Bégué, Hüsne; Pe’er, Asaf; Ryde, Felix; Oates, Samantha R.; Zhang, Bing; Dainotti, Maria G. (2022-09-24). „A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau“. Nature Communications (англиски). 13 (1): 5611. arXiv:2207.11066. Bibcode:2022NatCo..13.5611D. doi:10.1038/s41467-022-32881-1. ISSN 2041-1723. PMC 9509382 Проверете ја вредноста
|pmc=
(help). PMID 36153328 Проверете ја вредноста|pmid=
(help). - ↑ Pe’er, Asaf (2019). „Plasmas in Gamma-Ray Bursts: Particle Acceleration, Magnetic Fields, Radiative Processes and Environments“. Galaxies (англиски). 7 (1): 33. arXiv:1902.02562. Bibcode:2019Galax...7...33P. doi:10.3390/galaxies7010033. ISSN 2075-4434.
- ↑ Hakkila, Jon; Nemiroff, Robert (2019-09-23). „Time-reversed Gamma-Ray Burst Light-curve Characteristics as Transitions between Subluminal and Superluminal Motion“. The Astrophysical Journal (англиски). 883 (1): 70. arXiv:1908.07306. Bibcode:2019ApJ...883...70H. doi:10.3847/1538-4357/ab3bdf. ISSN 0004-637X.
- ↑ Ratner, Paul (2019-09-25). „Astrophysicists: Gamma-ray jets exceed the speed of light“. Big Think (англиски). Посетено на 10 септември 2024.
- ↑ Siegel, Ethan (2019-10-05). „Ask Ethan: Can Gamma-Ray Jets Really Travel Faster Than The Speed Of Light?“. Forbes (англиски). Посетено на 10 септември 2024.
- ↑ Sari 1999
- ↑ Burrows 2006
- ↑ 103,0 103,1 Frail 2001
- ↑ Melia, Fulvio (2009). High-Energy Astrophysics (англиски). Princeton University Press. стр. 241. ISBN 978-0-691-13543-4.
- ↑ Mazzali 2005
- ↑ Frail 2000
- ↑ 107,0 107,1 107,2 107,3 Rueda, Jorge A.; Ruffini, Remo; Moradi, Rahim; Wang, Yu (2021). „A brief review of binary-driven hypernova“. International Journal of Modern Physics D (англиски). 30 (15). arXiv:2201.03500. Bibcode:2021IJMPD..3030007R. doi:10.1142/S021827182130007X. ISSN 0218-2718.
- ↑ Aimuratov, Y.; Becerra, L. M.; Bianco, C. L.; Cherubini, C.; Valle, M. Della; Filippi, S.; Li, Liang; Moradi, R.; Rastegarnia, F. (2023). „GRB-SN Association within the Binary-driven Hypernova Model“. The Astrophysical Journal (англиски). 955 (2): 93. arXiv:2303.16902. Bibcode:2023ApJ...955...93A. doi:10.3847/1538-4357/ace721. ISSN 0004-637X.
- ↑ 109,0 109,1 Rueda, J. A.; Ruffini, R.; Wang, Y. (2019-05-09). „Induced Gravitational Collapse, Binary-Driven Hypernovae, Long Gramma-ray Bursts and Their Connection with Short Gamma-ray Bursts“. Universe (англиски). 5 (5): 110. arXiv:1905.06050. Bibcode:2019Univ....5..110R. doi:10.3390/universe5050110. ISSN 2218-1997.
- ↑ Billings, Lee (2019-11-20). „Record-Breaking Gamma Rays Reveal Secrets of the Universe's Most Powerful Explosions“. Scientific American (англиски). Посетено на 10 септември 2024.
- ↑ Choi, Charles Q. (2019-11-20). „The Most Powerful Explosions in the Universe Emit Way More Energy Than Anyone Thought“. Space.com (англиски). Посетено на 10 септември 2024.
- ↑ 112,0 112,1 Prochaska 2006
- ↑ Watson 2006
- ↑ Grupe 2006
- ↑ MacFadyen 1999
- ↑ Zhang, Bing; Mészáros, Peter (2001-05-01). „Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar“. The Astrophysical Journal Letters. 552 (1): L35–L38. arXiv:astro-ph/0011133. Bibcode:2001ApJ...552L..35Z. doi:10.1086/320255.
- ↑ Troja, E.; Cusumano, G.; O'Brien, P. T.; Zhang, B.; Sbarufatti, B.; Mangano, V.; Willingale, R.; Chincarini, G.; Osborne, J. P. (2007-08-01). „Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine“. The Astrophysical Journal. 665 (1): 599–607. arXiv:astro-ph/0702220. Bibcode:2007ApJ...665..599T. doi:10.1086/519450.
- ↑ Ruffini, R.; Muccino, M.; Bianco, C. L.; Enderli, M.; Izzo, L.; Kovacevic, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A. (2014-05-01). „On binary-driven hypernovae and their nested late X-ray emission“. Astronomy & Astrophysics (англиски). 565: L10. arXiv:1404.3946. Bibcode:2014A&A...565L..10R. doi:10.1051/0004-6361/201423812. ISSN 0004-6361.
- ↑ Fryer, Chris L.; Rueda, Jorge A.; Ruffini, Remo (2014-09-16). „Hypercritical Accretion, Induced Gravitational Collapse, and Binary-Driven Hypernovae“. The Astrophysical Journal. 793 (2): L36. arXiv:1409.1473. Bibcode:2014ApJ...793L..36F. doi:10.1088/2041-8205/793/2/l36. ISSN 2041-8213.
- ↑ „Binary-driven hypernova model gains observational support“. phys.org (англиски). 2020-05-19. Посетено на 10 септември 2024.
- ↑ Plait 2008
- ↑ Stanek 2006
- ↑ Abbott 2007
- ↑ Kochanek 1993
- ↑ Vietri 1998
- ↑ MacFadyen 2006
- ↑ Blinnikov 1984
- ↑ Cline 1996
- ↑ Winterberg, Friedwardt (29 август 2001). "Gamma-Ray Bursters and Lorentzian Relativity". Z. Naturforsch 56a: 889–892.
- ↑ Cendes, Yvette (8 декември 2021). „How do black holes swallow stars?“. Astronomy Magazine. Посетено на 10 септември 2024.
- ↑ 131,0 131,1 Hensley, Kerry (8 ноември 2023). „Why Are Jets from Disrupted Stars So Rare?“. AAS Nova.
- ↑ Stern 2007
- ↑ Fishman, G. 1995
- ↑ Fan & Piran 2006
- ↑ Liang, E. P.; Crider, A.; Boettcher, M.; Smith, I. A. (1999-03-29). „GRB990123: The Case for Saturated Comptonization“. The Astrophysical Journal. 519 (1): L21–L24. arXiv:astro-ph/9903438. Bibcode:1999ApJ...519L..21L. doi:10.1086/312100.
- ↑ Wozniak 2009
- ↑ Meszaros 1997
- ↑ Sari 1998
- ↑ Nousek 2006
- ↑ „ESO Telescopes Observe Swift Satellite's 1000th Gamma-ray Burst“. 6 ноември 2015. Посетено на 10 септември 2024.
- ↑ Piran, Tsvi; Jimenez, Raul (5 декември 2014). „Possible Role of Gamma Ray Bursts on Life Extinction in the Universe“. Physical Review Letters. 113 (23): 231102. arXiv:1409.2506. Bibcode:2014PhRvL.113w1102P. doi:10.1103/PhysRevLett.113.231102. PMID 25526110.
- ↑ Schirber, Michael (2014-12-08). „Focus: Gamma-Ray Bursts Determine Potential Locations for Life“. Physics. 7: 124. doi:10.1103/Physics.7.124.
- ↑ Cain, Fraser (12 јануари 2015). „Are Gamma Ray Bursts Dangerous?“.
- ↑ Soderberg, A. M.; Kulkarni, S. R.; Berger, E.; Fox, D. W.; Sako, M.; Frail, D. A.; Gal-Yam, A.; Moon, D. S.; Cenko, S. B. (2004). „The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425“. Nature. 430 (7000): 648–650. arXiv:astro-ph/0408096. Bibcode:2004Natur.430..648S. doi:10.1038/nature02757. PMID 15295592.
- ↑ Le Floc'h, E.; Charmandaris, V.; Gordon, K.; Forrest, W. J.; Brandl, B.; Schaerer, D.; Dessauges-Zavadsky, M.; Armus, L. (2011). „The first Infrared study of the close environment of a long Gamma-Ray Burst“. The Astrophysical Journal. 746 (1): 7. arXiv:1111.1234. Bibcode:2012ApJ...746....7L. doi:10.1088/0004-637X/746/1/7.
- ↑ Kippen, R.M.; Briggs, M. S.; Kommers, J. M.; Kouveliotou, C.; Hurley, K.; Robinson, C. R.; Van Paradijs, J.; Hartmann, D. H.; Galama, T. J. (октомври 1998). „On the Association of Gamma-Ray Bursts with Supernovae“. The Astrophysical Journal. 506 (1): L27–L30. arXiv:astro-ph/9806364. Bibcode:1998ApJ...506L..27K. doi:10.1086/311634.
- ↑ Morelle, Rebecca (2013-01-21). „Gamma-ray burst 'hit Earth in 8th Century'“. BBC News. Посетено на 10 септември 2024.
- ↑ Guetta and Piran 2006
- ↑ Welsh, Jennifer (2011-07-10). „Can gamma-ray bursts destroy life on Earth?“. MSN. Архивирано од изворникот на 22 ноември 2013. Посетено на 10 септември 2024.
- ↑ „Gamma-ray bursts: are we safe?“. www.esa.int (англиски). 2003-09-17. Посетено на 10 септември 2024.
- ↑ Lincoln, Don (2023-06-06). „Scientists are exploring how deadly gamma-ray bursts could sterilize — or vaporize — the Earth“. Big Think (англиски). Посетено на 10 септември 2024.
- ↑ „Cosmic energy burst disturbs Earth's atmosphere“. NASA Science. 29 септември 1998. Архивирано од изворникот на 24 јануари 2023. Посетено на 10 септември 2024.
- ↑ 153,0 153,1 153,2 Thomas, B.C. (2009). „Gamma-ray bursts as a threat to life on Earth“. International Journal of Astrobiology. 8 (3): 183–186. arXiv:0903.4710. Bibcode:2009IJAsB...8..183T. doi:10.1017/S1473550409004509.
- ↑ 154,0 154,1 154,2 Martin, Osmel; Cardenas, Rolando; Guimarais, Mayrene; Peñate, Liuba; Horvath, Jorge; Galante, Douglas (2010). „Effects of gamma ray bursts in Earth's biosphere“. Astrophysics and Space Science. 326 (1): 61–67. arXiv:0911.2196. Bibcode:2010Ap&SS.326...61M. doi:10.1007/s10509-009-0211-7.
- ↑ Piran, Tsvi; Jimenez, Raul (2014-12-05). „Possible Role of Gamma Ray Bursts on Life Extinction in the Universe“. Physical Review Letters. 113 (23): 231102. arXiv:1409.2506. Bibcode:2014PhRvL.113w1102P. doi:10.1103/PhysRevLett.113.231102. PMID 25526110.
- ↑ Thomas, Brian C.; Melott, Adrian Lewis; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P. (20 ноември 2005). „Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects“. The Astrophysical Journal. 634 (1): 509–533. arXiv:astro-ph/0505472. Bibcode:2005ApJ...634..509T. doi:10.1086/496914. Посетено на 10 септември 2024.
- ↑ Pavlov, A.K.; Blinov, A.V.; Konstantinov, A.N.; и др. (2013). „AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst“. Mon. Not. R. Astron. Soc. 435 (4): 2878–2884. arXiv:1308.1272. Bibcode:2013MNRAS.435.2878P. doi:10.1093/mnras/stt1468.
- ↑ Hambaryan, V.V.; Neuhauser, R. (2013). „A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5“. Monthly Notices of the Royal Astronomical Society. 430 (1): 32–36. arXiv:1211.2584. Bibcode:2013MNRAS.430...32H. doi:10.1093/mnras/sts378.
- ↑ Mekhaldi; и др. (2015). „Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4“. Nature Communications. 6: 8611. Bibcode:2015NatCo...6.8611M. doi:10.1038/ncomms9611. PMC 4639793. PMID 26497389.
- ↑ „Illustration of a Short Gamma-Ray Burst Caused by a Collapsing Star“. 26 јули 2021. Посетено на 10 септември 2024.
- ↑ Lauren Fuge (20 ноември 2018). „Milky Way star set to go supernova“. Cosmos. Посетено на 10 септември 2024.
- ↑ Vink JS (2013). „Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars“. Philos Trans Royal Soc A. 371 (1992): 20120237. Bibcode:2013RSPTA.37120237V. doi:10.1098/rsta.2012.0237. PMID 23630373.
- ↑ Y-H. Chu; C-H. Chen; S-P. Lai (2001). „Superluminous supernova remnants“. Во Mario Livio; Nino Panagia; Kailash Sahu (уред.). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. Cambridge University Press. стр. 135. ISBN 978-0-521-79141-0.
- ↑ Van Den Heuvel, E. P. J.; Yoon, S.-C. (2007). „Long gamma-ray burst progenitors: Boundary conditions and binary models“. Astrophysics and Space Science. 311 (1–3): 177–183. arXiv:0704.0659. Bibcode:2007Ap&SS.311..177V. doi:10.1007/s10509-007-9583-8.
Општи извори
уреди- Abbott, B.; и др. (2008). „Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs“. Physical Review D. 77 (6): 062004. arXiv:0709.0766. Bibcode:2008PhRvD..77f2004A. doi:10.1103/PhysRevD.77.062004. S2CID 11210560.
- Abdo, A.A.; и др. (2009). „Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C“. Science. 323 (5922): 1688–1693. Bibcode:2009Sci...323.1688A. doi:10.1126/science.1169101. OSTI 1357451. PMID 19228997. S2CID 7821247.
- Akerlof, C.; и др. (1999). „Observation of contemporaneous optical radiation from a gamma-ray burst“. Nature. 398 (3): 400–402. arXiv:astro-ph/9903271. Bibcode:1999Natur.398..400A. doi:10.1038/18837. S2CID 4422084.
- Akerlof, C.; и др. (2003). „The ROTSE-III Robotic Telescope System“. Publications of the Astronomical Society of the Pacific. 115 (803): 132–140. arXiv:astro-ph/0210238. Bibcode:2003PASP..115..132A. doi:10.1086/345490. S2CID 10152025.
- Atwood, W.B.; Fermi/LAT Collaboration (2009). „The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission“. The Astrophysical Journal. 697 (2): 1071–1102. arXiv:0902.1089. Bibcode:2009ApJ...697.1071A. doi:10.1088/0004-637X/697/2/1071. S2CID 26361978.
- Ball, J.A. (1995). „Gamma-Ray Bursts: The ETI Hypothesis“. The Astrophysical Journal.[мртва врска]
- Barthelmy, S.D.; и др. (2005). „The Burst Alert Telescope (BAT) on the SWIFT Midex Mission“. Space Science Reviews. 120 (3–4): 143–164. arXiv:astro-ph/0507410. Bibcode:2005SSRv..120..143B. doi:10.1007/s11214-005-5096-3. S2CID 53986264.
- Berger, E.; и др. (2007). „Galaxy Clusters Associated with Short GRBs. I. The Fields of GRBs 050709, 050724, 050911, and 051221a“. Astrophysical Journal. 660 (1): 496–503. arXiv:astro-ph/0608498. Bibcode:2007ApJ...660..496B. doi:10.1086/512664. S2CID 118873307.
- Blinnikov, S.; и др. (1984). „Exploding Neutron Stars in Close Binaries“. Писма Во Астрономско Списание. 10: 177. arXiv:1808.05287. Bibcode:1984SvAL...10..177B.
- Bloom, J.S.; и др. (2006). „Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b“. Astrophysical Journal. 638 (1): 354–368. arXiv:astro-ph/0505480. Bibcode:2006ApJ...638..354B. doi:10.1086/498107. S2CID 5309369.
- Bloom, J.S.; и др. (2009). „Observations of the Naked-Eye GRB 080319B: Implications of Nature's Brightest Explosion“. Astrophysical Journal. 691 (1): 723–737. arXiv:0803.3215. Bibcode:2009ApJ...691..723B. doi:10.1088/0004-637X/691/1/723. S2CID 16440948.
- Bloom, J. S.; и др. (2011). „A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star“. Science. 333 (6039): 203–206. arXiv:1104.3257. Bibcode:2011Sci...333..203B. doi:10.1126/science.1207150. PMID 21680812. S2CID 31819412.
- Burrows, D.N.; и др. (2006). „Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A“. Astrophysical Journal. 653 (1): 468–473. arXiv:astro-ph/0604320. Bibcode:2006ApJ...653..468B. doi:10.1086/508740. S2CID 28202288.
- Cline, D.B. (1996). „Primordial black-hole evaporation and the quark–gluon phase transition“. Nuclear Physics A. 610: 500. Bibcode:1996NuPhA.610..500C. doi:10.1016/S0375-9474(96)00383-1.
- Chattopadhyay, T.; и др. (2007). „Statistical Evidence for Three Classes of Gamma-Ray Bursts“. Astrophysical Journal. 667 (2): 1017–1023. arXiv:0705.4020. Bibcode:2007ApJ...667.1017C. doi:10.1086/520317. S2CID 14923248.
- Ejzak, L.M.; и др. (2007). „Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events“. Astrophysical Journal. 654 (1): 373–384. arXiv:astro-ph/0604556. Bibcode:2007ApJ...654..373E. doi:10.1086/509106. S2CID 14012911.
- Fan, Y.; Piran, T. (2006). „Gamma-ray burst efficiency and possible physical processes shaping the early afterglow“. Monthly Notices of the Royal Astronomical Society. 369 (1): 197–206. arXiv:astro-ph/0601054. Bibcode:2006MNRAS.369..197F. doi:10.1111/j.1365-2966.2006.10280.x. S2CID 7950263.
- Fishman, C.J.; Meegan, C.A. (1995). „Gamma-Ray Bursts“. Annual Review of Astronomy and Astrophysics. 33: 415–458. Bibcode:1995ARA&A..33..415F. doi:10.1146/annurev.aa.33.090195.002215.
- Fishman, G.J. (1995). „Gamma-Ray Bursts: An Overview“. NASA. Посетено на 10 септември 2024.
- Frail, D.A.; и др. (2001). „Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir“. Astrophysical Journal Letters. 562 (1): L557–L558. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. S2CID 1047372.
- Frail, D.A.; и др. (2000). „A 450 Day Light Curve of the Radio Afterglow of GRB 970508: Fireball Calorimetry“. Astrophysical Journal. 537 (7): 191–204. arXiv:astro-ph/9910319. Bibcode:2000ApJ...537..191F. CiteSeerX 10.1.1.316.9937. doi:10.1086/309024. S2CID 15652654.
- Frederiks, D.; и др. (2008). „GRB 051103 and GRB 070201 as Giant Flares from SGRs in Nearby Galaxies“. Во Galassi; Palmer; Fenimore (уред.). American Institute of Physics Conference Series. 1000. стр. 271–275. Bibcode:2008AIPC.1000..271F. doi:10.1063/1.2943461.
- Frontera, F.; Piro, L. (1998). Proceedings of Gamma-Ray Bursts in the Afterglow Era. Astronomy and Astrophysics Supplement Series. Архивирано од изворникот на 2006-08-08.
- Galama, T.J.; и др. (1998). „An unusual supernova in the error box of the gamma-ray burst of 25 April 1998“. Nature. 395 (6703): 670–672. arXiv:astro-ph/9806175. Bibcode:1998Natur.395..670G. doi:10.1038/27150. S2CID 4421384.
- Garner, R. (2008). „NASA's Swift Catches Farthest Ever Gamma-Ray Burst“. НАСА. Посетено на 10 септември 2024.
- Gehrels, N.; и др. (2004). „The Swift Gamma-Ray Burst Mission“. Astrophysical Journal. 611 (2): 1005–1020. arXiv:astro-ph/0405233. Bibcode:2004ApJ...611.1005G. doi:10.1086/422091. S2CID 17871491.
- Gehrels, N.; и др. (2005). „A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z=0.225“. Nature. 437 (7060): 851–854. arXiv:astro-ph/0505630. Bibcode:2005Natur.437..851G. doi:10.1038/nature04142. PMID 16208363. S2CID 4395679.
- Grupe, D.; и др. (2006). „Jet Breaks in Short Gamma-Ray Bursts. I: The Uncollimated Afterglow of GRB 050724“. Astrophysical Journal. 653 (1): 462–467. arXiv:astro-ph/0603773. Bibcode:2006ApJ...653..462G. doi:10.1086/508739. S2CID 10918630.
- Guetta, D.; Piran, T. (2006). „The BATSE-Swift luminosity and redshift distributions of short-duration GRBs“. Astronomy and Astrophysics. 453 (3): 823–828. arXiv:astro-ph/0511239. Bibcode:2006A&A...453..823G. doi:10.1051/0004-6361:20054498. S2CID 11790226.
- Hakkila, J.; и др. (2003). „How Sample Completeness Affects Gamma-Ray Burst Classification“. Astrophysical Journal. 582 (1): 320–329. arXiv:astro-ph/0209073. Bibcode:2003ApJ...582..320H. doi:10.1086/344568. S2CID 14606496.
- Horvath, I. (1998). „A Third Class of Gamma-Ray Bursts?“. Astrophysical Journal. 508 (2): 757. arXiv:astro-ph/9803077. Bibcode:1998ApJ...508..757H. doi:10.1086/306416. S2CID 119395213.
- Hjorth, J.; и др. (2005). „GRB 050509B: Constraints on Short Gamma-Ray Burst Models“. Astrophysical Journal Letters. 630 (2): L117–L120. arXiv:astro-ph/0506123. Bibcode:2005ApJ...630L.117H. doi:10.1086/491733. hdl:2299/1083. S2CID 17532533.
- Hurley, K.; Cline, T.; Epstein, R. (1986). „Error Boxes and Spatial Distribution“. Во Liang, E.P.; Petrosian, V. (уред.). AIP Conference Proceedings. Gamma-Ray Bursts. 141. American Institute of Physics. стр. 33–38. ISBN 0-88318-340-4.
- Hurley, K. (1992). „Gamma-Ray Bursts – Receding from Our Grasp“. Nature. 357 (6374): 112. Bibcode:1992Natur.357..112H. doi:10.1038/357112a0. S2CID 4345987.
- Hurley, K. (2003). „A Gamma-Ray Burst Bibliography, 1973–2001“ (PDF). Во Ricker, G.R.; Vanderspek, R.K. (уред.). Gamma-Ray Burst and Afterglow Astronomy, 2001: A Workshop Celebrating the First Year of the HETE Mission. American Institute of Physics. стр. 153–155. ISBN 0-7354-0122-5.
- Hurley, K.; и др. (2005). „An exceptionally bright flare from SGR 1806–20 and the origins of short-duration gamma-ray bursts“. Nature. 434 (7037): 1098–1103. arXiv:astro-ph/0502329. Bibcode:2005Natur.434.1098H. doi:10.1038/nature03519. PMID 15858565. S2CID 4424508.
- Katz, J.I. (2002). The Biggest Bangs. Oxford University Press. ISBN 978-0-19-514570-0.
- Klebesadel, R.; и др. (1973). „Observations of Gamma-Ray Bursts of Cosmic Origin“. Astrophysical Journal Letters. 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
- Kochanek, C.S.; Piran, T. (1993). „Gravitational Waves and Gamma-Ray Bursts“. Astrophysical Journal Letters. 417: L17–L23. arXiv:astro-ph/9305015. Bibcode:1993ApJ...417L..17K. doi:10.1086/187083. S2CID 119478615.
- Kouveliotou, C.; и др. (1993). „Identification of two classes of gamma-ray bursts“. Astrophysical Journal Letters. 413: L101. Bibcode:1993ApJ...413L.101K. doi:10.1086/186969.
- Lamb, D.Q. (1995). „The Distance Scale to Gamma-Ray Bursts“. Publications of the Astronomical Society of the Pacific. 107: 1152. Bibcode:1995PASP..107.1152L. doi:10.1086/133673. S2CID 120690877.
- Lazzati, D. (2005). „Precursor activity in bright, long BATSE gamma-ray bursts“. Monthly Notices of the Royal Astronomical Society. 357 (2): 722–731. arXiv:astro-ph/0411753. Bibcode:2005MNRAS.357..722L. doi:10.1111/j.1365-2966.2005.08687.x. S2CID 118886010.
- Krolik J.; Piran T. (2011). „Swift J1644+57: A White Dwarf Tidally Disrupted by a 10^4 M_{odot} Black Hole?“. The Astrophysical Journal. 743 (2): 134. arXiv:1106.0923. Bibcode:2011ApJ...743..134K. doi:10.1088/0004-637x/743/2/134. S2CID 118446962.
- Levan, A. J.; и др. (2011). „An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy“. Science. 333 (6039): 199–202. arXiv:1104.3356. Bibcode:2011Sci...333..199L. doi:10.1126/science.1207143. PMID 21680811. S2CID 13118370.
- MacFadyen, A.I.; Woosley, S. (1999). „Collapsars: Gamma-Ray Bursts and Explosions in "Failed Supernovae"“. Astrophysical Journal. 524 (1): 262–289. arXiv:astro-ph/9810274. Bibcode:1999ApJ...524..262M. doi:10.1086/307790. S2CID 15534333.
- MacFadyen, A.I. (2006). „Late flares from GRBs – Clues about the Central Engine“. AIP Conference Proceedings. 836: 48–53. Bibcode:2006AIPC..836...48M. doi:10.1063/1.2207856.
- Marani, G.F.; и др. (1997). „On Similarities among GRBs“. Bulletin of the American Astronomical Society. 29: 839. Bibcode:1997AAS...190.4311M.
- Mazzali, P.A.; и др. (2005). „An Asymmetric Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma Ray Bursts“. Science. 308 (5726): 1284–1287. arXiv:astro-ph/0505199. Bibcode:2005Sci...308.1284M. CiteSeerX 10.1.1.336.4043. doi:10.1126/science.1111384. PMID 15919986. S2CID 14330491.
- „The Annihilating Effects of Space Travel“. The University of Sydney. 2012.
- McMonigal, Brendan; Lewis, Geraint F; O'Byrne, Philip (2012). „The Alcubierre Warp Drive: On the Matter of Matter“. Physical Review D. 85 (6): 064024. arXiv:1202.5708. Bibcode:2012PhRvD..85f4024M. doi:10.1103/PhysRevD.85.064024. S2CID 3993148.
- Meegan, C.A.; и др. (1992). „Spatial distribution of gamma-ray bursts observed by BATSE“. Nature. 355 (6356): 143. Bibcode:1992Natur.355..143M. doi:10.1038/355143a0. S2CID 4301714.
- Melott, A.L.; и др. (2004). „Did a gamma-ray burst initiate the late Ordovician mass extinction?“. International Journal of Astrobiology. 3 (1): 55–61. arXiv:astro-ph/0309415. Bibcode:2004IJAsB...3...55M. doi:10.1017/S1473550404001910. hdl:1808/9204. S2CID 13124815.
- Meszaros, P.; Rees, M.J. (1997). „Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts“. Astrophysical Journal. 476 (1): 232–237. arXiv:astro-ph/9606043. Bibcode:1997ApJ...476..232M. doi:10.1086/303625. S2CID 10462685.
- Metzger, B.; и др. (2007). „Proto-Neutron Star Winds, Magnetar Birth, and Gamma-Ray Bursts“. AIP Conference Proceedings SUPERNOVA 1987A: 20 YEARS AFTER: Supernovae and Gamma-Ray Bursters. 937. стр. 521–525. arXiv:0704.0675. Bibcode:2007AIPC..937..521M. doi:10.1063/1.2803618 (неактивно 2024-11-30).
- Mukherjee, S.; и др. (1998). „Three Types of Gamma-Ray Bursts“. Astrophysical Journal. 508 (1): 314. arXiv:astro-ph/9802085. Bibcode:1998ApJ...508..314M. doi:10.1086/306386. S2CID 119356154.
- Nakar, E. (2007). „Short-hard gamma-ray bursts“. Physics Reports. 442 (1–6): 166–236. arXiv:astro-ph/0701748. Bibcode:2007PhR...442..166N. CiteSeerX 10.1.1.317.1544. doi:10.1016/j.physrep.2007.02.005. S2CID 119478065.
- McCray, Richard; и др. „Report of the 2008 Senior Review of the Astrophysics Division Operating Missions“ (PDF). Архивирано од изворникот (PDF) на 2009-05-12.
- Национална радиоастрономска набљудувачница (15 мај 1997). "Very Large Array Detects Radio Emission From Gamma-Ray Burst". Соопштение за печат.
- Nousek, J.A.; и др. (2006). „Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data“. Astrophysical Journal. 642 (1): 389–400. arXiv:astro-ph/0508332. Bibcode:2006ApJ...642..389N. doi:10.1086/500724. S2CID 16661813.
- Paczyński, B.; Rhoads, J.E. (1993). „Radio Transients from Gamma-Ray Bursters“. The Astrophysical Journal. 418: 5. arXiv:astro-ph/9307024. Bibcode:1993ApJ...418L...5P. doi:10.1086/187102. S2CID 17567870.
- Paczyński, B. (1995). „How Far Away Are Gamma-Ray Bursters?“. Publications of the Astronomical Society of the Pacific. 107: 1167. arXiv:astro-ph/9505096. Bibcode:1995PASP..107.1167P. doi:10.1086/133674. S2CID 15952977.
- Paczyński, B. (1999). „Gamma-Ray Burst–Supernova relation“. Во M. Livio; N. Panagia; K. Sahu (уред.). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. Space Telescope Science Institute. стр. 1–8. ISBN 0-521-79141-3.
- Pedersen, H.; и др. (1986). „Deep Searches for Burster Counterparts“. Во Liang, Edison P.; Petrosian, Vahé (уред.). AIP Conference Proceedings. Gamma-Ray Bursts. 141. American Institute of Physics. стр. 39–46. ISBN 0-88318-340-4.
- Plait, Phil (2 март 2008). „WR 104: A nearby gamma-ray burst?“. Bad Astronomy. Посетено на 10 септември 2024.
- Piran, T. (1992). „The implications of the Compton (GRO) observations for cosmological gamma-ray bursts“. Astrophysical Journal Letters. 389: L45. Bibcode:1992ApJ...389L..45P. doi:10.1086/186345.
- Piran, T. (1997). „Toward understanding gamma-ray bursts“. Во Bahcall, J.N.; Ostriker, J. (уред.). Unsolved Problems in Astrophysics. стр. 343. Bibcode:1997upa..conf..343P.
- Podsiadlowski, Ph.; и др. (2004). „The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors“. Astrophysical Journal Letters. 607 (1): L17–L20. arXiv:astro-ph/0403399. Bibcode:2004ApJ...607L..17P. doi:10.1086/421347. S2CID 119407415.
- Pontzen, A.; и др. (2010). „The nature of HI absorbers in GRB afterglows: clues from hydrodynamic simulations“. MNRAS. 402 (3): 1523. arXiv:0909.1321. Bibcode:2010MNRAS.402.1523P. doi:10.1111/j.1365-2966.2009.16017.x. S2CID 3176299.
- Prochaska, J.X.; и др. (2006). „The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts“. Astrophysical Journal. 641 (2): 989–994. arXiv:astro-ph/0510022. Bibcode:2006ApJ...642..989P. doi:10.1086/501160. S2CID 54915144.
- Racusin, J.L.; и др. (2008). „Broadband observations of the naked-eye gamma-ray burst GRB080319B“. Nature. 455 (7210): 183–188. arXiv:0805.1557. Bibcode:2008Natur.455..183R. doi:10.1038/nature07270. PMID 18784718. S2CID 205214609.
- NASA (28 април 2009). "New Gamma-Ray Burst Smashes Cosmic Distance Record". Соопштение за печат.
- Ricker, G.R.; Vanderspek, R.K. (2003). „The High Energy Transient Explorer (HETE): Mission and Science Overview“. Во Ricker, G.R.; Vanderspek, R.K. (уред.). Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission. American Institute of Physics Conference Series. 662. стр. 3–16. Bibcode:2003AIPC..662....3R. doi:10.1063/1.1579291.
- Reichart, Daniel E. (1998). „The Redshift of GRB 970508“. Astrophysical Journal Letters. 495 (2): L99–L101. arXiv:astro-ph/9712100. Bibcode:1998ApJ...495L..99R. doi:10.1086/311222. S2CID 119394440.
- Rykoff, E.; и др. (2009). „Looking into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows“. Astrophysical Journal. 702 (1): 489–505. arXiv:0904.0261. Bibcode:2009ApJ...702..489R. doi:10.1088/0004-637X/702/1/489. S2CID 14593280.
- Sari, R; Piran, T; Narayan, R (1998). „Spectra and Light Curves of Gamma-Ray Burst Afterglows“. Astrophysical Journal Letters. 497 (5): L17. arXiv:astro-ph/9712005. Bibcode:1998ApJ...497L..17S. doi:10.1086/311269. S2CID 16691949.
- Sari, R; Piran, T; Halpern, JP (1999). „Jets in Gamma-Ray Bursts“. Astrophysical Journal Letters. 519 (1): L17–L20. arXiv:astro-ph/9903339. Bibcode:1999ApJ...519L..17S. doi:10.1086/312109. S2CID 120591941.
- Schilling, Govert (2002). Flash! The hunt for the biggest explosions in the universe. Cambridge University Press. ISBN 978-0-521-80053-2.
- „Gamma-Ray Flash Came from Star Being Eaten by Massive Black Hole“. Science Daily. ScienceDaily LLC. 2011-06-16. Посетено на 10 септември 2024.
- Simić, S.; и др. (2005). „A model for temporal variability of the GRB light curve“. Во Bulik, T.; Rudak, B.; Madejski, G. (уред.). Astrophysical Sources of High Energy Particles and Radiation. American Institute of Physics Conference Series. 801. стр. 139–140. Bibcode:2005AIPC..801..139S. doi:10.1063/1.2141849.
- Stanek, K.Z.; и др. (2006). „Protecting Life in the Milky Way: Metals Keep the GRBs Away“ (PDF). Acta Astronomica. 56: 333. arXiv:astro-ph/0604113. Bibcode:2006AcA....56..333S.
- Stern, Boris E.; Poutanen, Juri (2004). „Gamma-ray bursts from synchrotron self-Compton emission“. Monthly Notices of the Royal Astronomical Society. 352 (3): L35–L39. arXiv:astro-ph/0405488. Bibcode:2004MNRAS.352L..35S. doi:10.1111/j.1365-2966.2004.08163.x. S2CID 14540608.
- Thorsett, S.E. (1995). „Terrestrial implications of cosmological gamma-ray burst models“. Astrophysical Journal Letters. 444: L53. arXiv:astro-ph/9501019. Bibcode:1995ApJ...444L..53T. doi:10.1086/187858. S2CID 15117551.
- „TNG caught the farthest GRB observed ever“. Фондација „Галилео Галилеј“. 24 април 2009. Архивирано од изворникот на 8 мај 2012. Посетено на 10 септември 2024.
- van Paradijs, J.; и др. (1997). „Transient optical emission from the error box of the gamma-ray burst of 28 February 1997“. Nature. 386 (6626): 686. Bibcode:1997Natur.386..686V. doi:10.1038/386686a0. S2CID 4248753.
- Vedrenne, G.; Atteia, J.-L. (2009). Gamma-Ray Bursts: The brightest explosions in the Universe. Springer. ISBN 978-3-540-39085-5.
- Vietri, M.; Stella, L. (1998). „A Gamma-Ray Burst Model with Small Baryon Contamination“. Astrophysical Journal Letters. 507 (1): L45–L48. arXiv:astro-ph/9808355. Bibcode:1998ApJ...507L..45V. doi:10.1086/311674. S2CID 119357420.
- Virgili, F.J.; Liang, E.-W.; Zhang, B. (2009). „Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints“. Monthly Notices of the Royal Astronomical Society. 392 (1): 91–103. arXiv:0801.4751. Bibcode:2009MNRAS.392...91V. doi:10.1111/j.1365-2966.2008.14063.x. S2CID 18119432.
- Wanjek, Christopher (4 јуни 2005). „Explosions in Space May Have Initiated Ancient Extinction on Earth“. НАСА. Посетено на 10 септември 2024.
- Watson, D.; и др. (2006). „Are short γ-ray bursts collimated? GRB 050709, a flare but no break“. Astronomy and Astrophysics. 454 (3): L123–L126. arXiv:astro-ph/0604153. Bibcode:2006A&A...454L.123W. doi:10.1051/0004-6361:20065380. S2CID 15043502.
- Woosley, S.E.; Bloom, J.S. (2006). „The Supernova Gamma-Ray Burst Connection“. Annual Review of Astronomy and Astrophysics. 44 (1): 507–556. arXiv:astro-ph/0609142. Bibcode:2006ARA&A..44..507W. CiteSeerX 10.1.1.254.373. doi:10.1146/annurev.astro.43.072103.150558. S2CID 119338140.
- Wozniak, P.R.; и др. (2009). „Gamma-Ray Burst at the Extreme: The Naked-Eye Burst GRB 080319B“. Astrophysical Journal. 691 (1): 495–502. arXiv:0810.2481. Bibcode:2009ApJ...691..495W. doi:10.1088/0004-637X/691/1/495. S2CID 118441505.
- Zhang, B.; и др. (2009). „Discerning the physical origins of cosmological gamma-ray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs“. Astrophysical Journal. 703 (2): 1696–1724. arXiv:0902.2419. Bibcode:2009ApJ...703.1696Z. doi:10.1088/0004-637X/703/2/1696. S2CID 14280828.
Дополнителна книжевност
уреди- Vedrenne, G.; Atteia, J.-L. (2009). Gamma-Ray Bursts: The brightest explosions in the Universe. Springer. ISBN 978-3-540-39085-5.
- Chryssa Kouveliotou; Stanford E. Woosley; Ralph A. M. J., уред. (2012). Gamma-ray bursts. Cambridge: Cambridge University Press. ISBN 978-0-521-66209-3.
- Bing Zhang (2018). The Physics of Gamma-Ray Bursts. Cambridge: Cambridge University Press. ISBN 9781139226530.
Надворешни врски
уреди- Мрежни места за гама-изблици
- Свифтова мисија за гама-изблици:
- HETE-2: Преоден истражувач со висока енергија (википедиска статија)
- ИНТЕГРАЛ: МЕЃУНАРОДНА Лабораторија за астрофизика на гама-зраци (википедиска статија)
- BATSE: Burst and Transient Source Explorer
- Фермиев гама-зрачен вселенски телескоп ( википедиска статија)
- AGILE: Astro-rivelatore Gamma a Immagini Leggero (википедиска статија)
- Енергетски рендгенски истражувачки телескоп, Архивирано на 4 април 2009 г.
- Каталог на гама-зрачми изблици при НАСА
- Проследени програми за гама-изблици
- Мрежата за координати на гама-зрачни изблици (википедиска статија)
- BOOTES: Burst Observer и Optical Transient Exploring SystemАрхивирано на 23 април 2013 г. (википедиска статија)
- Оптички блискоинфрацрвен забележувач на гама-изблици (википедиска статија)
- Кацманов автоматско отсликувачки телескоп (википедиска статија)
- Подвижен астрономски систем на телескопи-роботи
- Опит за роботско оптичко минливо пребарување (википедиска статија)