Neural Network Toolbox: Разлика помеѓу преработките

Нема измена во големината ,  пред 2 години
с
Јазична исправка, replaced: базиран → заснован (3)
[проверена преработка][проверена преработка]
с (Бот Брише: en:Neural Network Toolbox (deleted))
с (Јазична исправка, replaced: базиран → заснован (3))
{{Без извори|датум=октомври 2009}}
Алатката базираназаснована на невронски мрежи ('''Neural Network Toolbox''') го прошитува [[MATLAB]] со алатки за дизајнирање, имплементирање, визуелизација, и симулирање на невронски мрежи. Невронските мрежи се непроценливи за апликации каде формалните анализи се тешки или невозможни, како што е препознавање на шаблони и нелинеарни системи на идентификација и управување. Neural Network Toolbox-от овозможува севкупна поддршка за повеќе докажани мрежни типични примери, како и графички кориснички посредник кој овозможува дизајнирање и управување на мрежите. Модулираниот, отворен дизајн на алтката го упростува креирањето на прилагодливи функции и мрежи.
 
== Работење со Neural Network Toolbox ==
Како и двојникот во биолошкиот нервен систем, невронска мрежа може да учи, и затоа може да се обучи да најде решенија, да препознае шаблони, класифицира податоци, и предвиди идни настани. Однесувањето на невронска мрежа е дефинирано од начинот индивидуалните пресметувачки елементи се поврзани, и од силината ба тие поврзувања, или тежини. Тежините се автоматски прилагодени со обучување на мрежата според специфично правило на учење сè додека не ја извршува коректно посакуваната задача.
 
[[Neural Network Toolbox]] графичкиот посредник овозможува полесна работа со невронските мрежи. Neural Network Fitting Tool е преставува волшебник кој води низ процесот на вметнување на податоци користејќи невронски мрежи. Оваа алатка се користи за внесување на големи и комплексни множества на податоци, брзо креирање и обучување на мрежи, и оценување на мрежните перформанси.
 
Друг графички посредник дава подобра способност за прилагодување на мрежна архитектура и алгоритамите за учење. Едноставна графичка репрезентација овозможува визуелизација и разбирлива мрежна архитектура.
Невронските мрежи со надзор се обучуваат за да дадат сакан излез како одговор на зададен влез, правејќи ги посебно добро прикладни за [[моделирање]] и [[управување динамички системи]], класифицирање на податоци под шум, и предвидување на идни настани.
Мрежите со предна спрега имаат еднонасочни врски од влезните до излезните слоеви. Тие се најмногу употребувани за предвидување, препознавање на шаблони, и нелинеарно функциско прилагодување.
Радијално базиранитезаснованите мрежи овозможуваат алтернативен, побрз метод за дизајнирање на нелинеарни мрежи со предна спрега.
Динамични мрежи користат мемориски врски и повторливи врски со предна спрега за да препознаат просторни и временски шаблони во податоците. Тие обично се користат за time-series prediction, [[нелинеарно моделирање на системи]], и апликации за управување со ситеми. Однапред изградените динамички мрежи во самата алатка вклучуваат фокусирачко и дистрибуирано временско каснење, нелинеарна авторегресивна (NARX), повторливост на слоеви, Елманови и [[Хопфилдови мрежи]]. Алатката исто така подржува динамичко обучување на прилагодливи мрежи со произволни врски.
LVQ е моќен метод за класификација на шаблони кои не се линеарно оддвојливи. LVQ овозможува специфицирање на класни граници и грануалитет на класификација.
Net input функциски блокови, кои земаат земаат произволен број на тежински влезни вектори, тежински слоевити излезни вектори, и базични вектори, така што враќаат a net-input вектор.
Weight функциски блокови, кои применуваат невронски тежински вектор на влезен вектор(или слоен излезен вектор) за да се добие тежинска влезна вредност за неврон.
Друг избор како алтернатива е да се креираат и обучуваат сопствени мрежи во [[MATLAB]] околина и автоматски да се генерираат мрежни симулациски блокови за употреба со [[Simulink]]. Овој пристап исто така овозможува да се прегледуваат мрежите графички.
 
=== Апликации за системи на управување ===
Neural Network Toolbox овозможува две решенија за подобрување на генерализацијата: регулација и рано стопирање.
Регулацијата ја модифицира мрежната перформансна функција (мерката за грешка која процесот за обука ја минимизира). Со вклучување на големините за тежини и бази, обуката произведува мрежа која извршува добро со податоците за обука и прикажува помирно држење која и се дава нови податоци.
Со рано стопирање се користат две различни податочни множества: множеството за обука, за ажурирање на тежини и бази, и множество за валидација за стопирање на обуката кога мрежата почнува да overfit податоци.
 
= Што е невронска мрежа? =
Невронските мрежи се состојат од елементи кои работат паралелно. Овие елементи се инспирирани од биолошките нервни системи. Како и во природата, мрежните функции се одредуваат претежно според врските помеѓу елементите. Невронска мрежа може да се обучи да извршува одредени функции со подесување на вредности на врските (тежини) помеѓу елементи.
Обично невронските мрежи се подесуваат, или обучуваат, така што одреден влез води кон специфичен целен излез. Такава ситуација е прикажана на сликата подоле. Тука, мрежата се подесува, базиранозасновано на споредбата на излезот и the target, сè додека мрежниот излез не го достигне target-от. Вообичаено многу вакви влезно/target парови се потребни за да се обучи една мрежа.
Невронските мрежи се обучуваат да извршуваат комплексни функции на различни полиња, вклучувајќи препознавање на шаблони, идентификација, класификација, говор, визија, и системи за управување.
Денес, невронските мрежи можат да се обучат за да решаваат проблеми кои се тешки за конвенционални компјутери или самиот човек. Низ целат алатка, посебно внимание е ставено на мрежните типични примери кои се изградуваат или самите се користат во индустриски, финансиски, и други практични апликации.