Космичко зрачење: Разлика помеѓу преработките

[проверена преработка][проверена преработка]
Избришана содржина Додадена содржина
с →‎Наводи: Замена со македонски назив на предлошка, replaced: cite journal → Наведено списание
с →‎Состав: Јазична исправка, replaced: титаниум → титан
Ред 9:
Космичките зраци можат да се поделат, главно на две категории: примарни и секундарни. Космичките зраци кои потекнуваат од екстрасоларни извиру на зрачење се нарекуваат примарни космички зраци; овие космички може заемно да дејствуваат со меѓуѕвездената материја и да создадат секундарни космички зраци. Сонцето исто така емитира нискоенергетски космички зраци кои се поврзани со соларните бури. Составот на примарните космички зраци, во надворешниот дел на Земјината атмосфера, зависи од тоа кој дел од енергетскиот спектар е набљудуван. Но, воглавно, 90% од сите зраци се протони, околу 9% се јкадра на хелиум (алфа честички) и отприлика 1% се електрони. Односот помеѓу јадрата на водород и хелиум е приближно ист како и односот на вие елементи во Универзумт.
Преостанатиот дел е составен од потешки јадра кои се резулат на процесите во Универзумот при кои се создаваат потешки елементи. Секундарните космички зраци се составени од други јадра кои не се производ на нуклеарна синтеза или производ на Големата експлозија, како литиум, берилиум, бор и слично. Овие лесни јадра се појавуваат кај космичките зраци во многу поголемо количество отколку кај Соларната атмосфера.
Разликата во количеството е резултат од начинот на кој се формираат секундарните космички зраци. Кога потешките јадра кои се составен дел на космичките зраци, како јаглеродните и кислородните јадра, се судрат со меѓуѕвездената материја, се распаѓаат на полесни јадра , односно на јадра на литиум, берилиум и бор. Откриено е дека енергетскиот спектар на литиумот, берилиумот и борот, се намалува многу пострмно, отколку оној на јаглеродот и кислородот, што укажува на тоа дека кај јадраа со повисока енергија доаѓа до помал распад поради тоа што тие јадра можат побрзо да го напуштат галактичкото магнетно поле. Распаѓањето е исто така причина за присуството на јони на скандиум, титаниумтитан, ванадиум и магнезиум во космичките зраци, кои се произведуваат со судир на железно и јадро на никел со меѓуѕвездената материја.
Експериментите на сателитите откриле докази на неколку антипротони и позитрони дури и во примарните космичи зраци, иако не постои доказ за сложено атомско јадро од анитиматерија, како антихелиумово јадро (антиалфа честички). Присуството на честички на антиматерија кое е забележано во примарните космички зраци се објаснува со тероијата дека и тие се создаваат преку судар на примарните космички зраци со меѓуѕвездената материја. На пример, стандарден начин за да се создаде античестичка во лабораторија е судир на протони со енергија >6 GeV, иако многу космички зраци ја надминуваат оваа енергија. Кога прости антиматеријални честички се создаваат во галаксијата преку овој процес, тие сè уште можат да поминуваат големи растојанија пристигнувајќи до Земјата, без притоа да бидат анихилирани од материјални честички со спротивен полнеж. Антипротоните пристигнуваат на Земјата со своја карактеристична енергија од максимум 2 GeV, што укажува на тоа дека тие се создаваат преку фундаментално различен процес од оној на кој се создаваат протоните.
Во минатото, се верувало дела флуксот на космичките зраци останува константен со текот на времето. Скорешните истражувања за временски период од 4 илјади години укажуваат на докази дека флуксот се менува во временски интервал од 1,5 до 2 илјади години.