Астрономија: Разлика помеѓу преработките

[проверена преработка][проверена преработка]
Избришана содржина Додадена содржина
Нема опис на уредувањето
с Јазична исправка, replaced: дијаметарот → пречникот using AWB
Ред 34:
'''Вселенска станица'''-Благодарејќи и на вселенската станица, астронаутите можат долго да живеат и работат во вселената. Научни опити, невозможни за на Земјата во вселената можат да траат со месеци па и со години. Станиците се големи за веднаш да се пренесат на вселената, па се составуваат од делови донесени од повеќе ракети.<br />
== Вавилонска астрономија ==
Иако [[Египќаните]], [[Маите]] и [[Кинезите]] развиле интересни карти на соѕвездија, како и корисни календари, сепак културата на [[Вавилонците]] бележи поголеми достигнувања. Вавилонската цивилизација растела од XVII до VI век п.н.е. За да го усовршат нивниот календар, тие ги проучувале движењата на Сонцето и Месечината. Тие го назначиле денот после новата месечина за почеток на секој месец. Околу 400 година п.н.е., период кога Вавилон е дел од [[Персија]], вавилонските астрономи забележале дека привидните движења на Сонцето и Месечината од запад кон исток околу Зодијакот немаат постојана брзини. Овие тела наизглед се движат со брзина која расте сè до половината на нивната ротација до одреден максимум по што нивната брзината опаѓа на својот минимум. Вавилонците се обиделе да го претстават овој циклус аритметички со тоа што на Месечината ‘и дале фиксна брзина на движење за време на едната половина од нејзиниот циклус, а различна фиксна брзина за другата половина од циклусот. Подоцна тие го усовршиле математичкиот метод со тоа што ја претставиле брзината на Месечината како фактор кој линеарно расте од минимум до максимум за време на првата половина од револуцијата, за потоа да опадне на минимумот до крајот на циклусот. Со овие пресметки на месечевите и сончевите движења Вавилонските набљудувачи на ѕвезди можеле да гопредвидат времето на новата месечина и воедно првиот ден од месецот. На сличен начин биле пресметани и планетарните позиции претставени заедно со нивните ретроградни и вообичаени движења кон исток. Веројатно е дека од оваа цивилизација потекнуваат астрономите кои го измислиле системот на пресметки.<br />
 
== Старогрчка астрономија ==
Ред 50:
{| class="wikitable"
|-
* Земјата е топка<br />
* Земјата лежи во близина на центарот на вселената<br />
* Земјата е неподвижна<br />
* Земјата не се движи околу својата оска<br />
* Земјата не се движи околу Сонцето<br />
* Сите тела се движат околу Земјата по кружни патеки и со непроменлива брзина (исклучок прават планетите)<br />
 
|}
 
== Средновековна астрономија ==
Во овој период грчката астрономија била пренесена кон исток на Сиријците, Хиндусите и Арапите. Арапските астрономи составиле нови ѕвездени каталози во IX и X век, а притоа развиле табели на планетарни движења. Арапите, како добри набљудувачи, направиле неколку корисни придонеси во астрономските теории.<br />
[[Ел-Бируни]] (973-1050) бил арапски научник кој пишувал на мноштво различни научни теми. Неговите најважни придонеси како научник биле неговите високо перцептивни набљудувања на природните феномени. Меѓу неговите најголеми дела се наоѓа и “Канон” што претставува негова најсеопфатна студија за астрономијата. Ел-Бируни принел докази дека Земјата е округла и развил нов метод за мерење на нејзината површината. Наоѓајќи ги разликите помеѓу аглите на Земјините испакнатини, тој извршил пресметка на дијаметаротпречникот на Земјата врз основа на различниот видик што се наоѓа пред него.<br />
 
'''Теоријата на Коперник'''[[Податотека:Galileo.arp.300pix.jpg|thumb|250px|right| Портрет на Галилео Галилеј ]]Полскиот астроном [[Никола Коперник]] извршил револуција во науката со тоа што го поставува постулатот дека Земјата и другите тела кружат околу стационарно Сонце. Со тоа тој му се спротивставил на дотогаш многу популарниот геоцентричен систем на [[Птоломеј]]. Коперник најпрвин се двоумел околу издавањето на неговото откритие, бидејќи се плашел од критицизмот на научните и религиозните заедници. Иако на почетокот претрпел отфрлање и недоверба, Копернковиот систем е рангиран за најприфатен концепт за вселената до крајот на XVII век. Всушност системот на Коперник привлекувал многу малку внимание сè додека италијанскиот астроном [[Галилео Галилеј]] (слика десно) не изнашол докази за негово поткрепување. Како таен обожавател на Коперниковиот труд, Галилео ја увидел шансата да ја Испроба Коперниковата теорија со пронаоѓањето на телескопот во Холандија.
Во 1609 година Галилео направил мал рефракторен телескоп, го насочил кон небото и ги открил фазите на Венера, што било индикација дека оваа планета кружи околу Сонцето: исто така открил четири месечини кои кружеле околу Јупитер, а ги забележал и прстените на Сатурн. Убеден во тоа дека, барем, некои тела не кружат околу Земјата, тој започнал да зборува и пишува подржувајќи го Коперниковиот систем. Неговите обиди да го публицира Коперниковиот систем го довеле до судири со црковните власти. Иако бил принудуван да се откаже од неговите верувања и писанија, оваа моќна теорија не можела да остане потисната.<br />
 
== Законите на Кеплер и теоријата на Њутн ==
Копрниковата теорија била само еден вид преуредување на планетарните орбити на Птоломеј. Теоријата на античките Грци за движењето на планетитепо кружници со фиксни брзини претставува, всушност, продолжение на Коперниковиот систем. Од 1580 до 1597 година данскиот астроном Тихо Брахеги набљудувал Сонцето, Месечината и планетите од опсерваторијата близу Копенхаген, а подоцна продолжил и во Германија. Врз основа на податоците собрани од Брахе, неговиот германски асистент, Јохан Кеплер (десно), ги формулирал законите за планетарните движења, притоа давајќи точен математички опис на планетарните орбите. Со тоа тој го изнаесол заклучокот дека планетите се движат околу Сонцето не по кружни орбити со униформирано движење, туку по елиптични орбити при различни брзини и дека нивните релативни растојанија од Сонцето можат да се одредат од набљудуваните периоди на нивната револуција.<br />
Иако во Италија храбриста на Галилео да навести постоење на други светови и храброста на Џордано Бруно да се впушти во размислување за други облици на живот им донела многу страдања, во Холандија астрономот [[Кристијан Хајгенс]], кој отворено ги застапувал идеите на Галилеј и на Бруно, бил опсипуван со почести. Хајгенс (1629-1695) конструирал повеќе дурбини како и часовник со секундарно клатно. Тој ја открил тајната на Сатурновиот прстен, а малку подоцна го извел и законот за центрифугална сила. Во времето на Хајгенс светлината претставувала предмет на научно истражување. Додека Снелиус ја испитувал рефракцијата, а Левнух го измислил микроскопот, самиот Хајгенс ја поставил теоријата за брановата природа на светлината. Тој тврдел дека поведението на природата на светлината е како ширење на бранови низ вакуум, слично на движењето на брановите во морето. Многу особини на светлината, вклучувајќи ја тука и дифракцијата, можат природно да се објаснат со брановата теорија, така што идејата на Хајгенс доминирала во годините потоа.
Британскиот физичар Сер Исак Њутн (лево) (1643-1727) се восхитувал од Хајгенс. Тој верувал дека светлината се однесува така како да претставува струја од ситни честички, делумно и поради тоа што сенките се одликуваат со остри рабови. Сметал дека црвената светлина се состои од најголеми честички, а виолетовата од најмали. Тој усовршил едноставен принцип за да ги објасни Кеплеровите закони за планетарните движења. Преку математичко резонирање, тој дошол до заклучокот дека постои одредена привлечна сила помеѓу Сонцето и секоја од планетите. Оваа сила, која зависи од масите на Сонцето и планетите како и од растојанијата меѓу нив, претставува основа за физичко интерпретирање на Кеплеровите закони. Њутновото математичко откритие е наречено Теорија на гравитација.<br />
 
== Кон модерната астрономија ==
Ред 85:
Магнитудите беа единственото мерило за сјајноста на ѕвездите сè до XIX век кога се развиени и инструменти со кои астрономите можеа да ја измерат вистинската количина на светлина што од една ѕвезда допира до Земјата. До 1850-тите се знаеше и многу повеќе за реакцијата на човечкото око на светлина и за сјајноста на ѕездите. Кога човечкото око споредува два објекта од кои едниот е два пати посветол од другиот, тие не го регистрираат истиот како два пати посјаен. Големата разлика во сјајноста резултира со релативно мала разлика во магнитуди. Астрономите ја дефинираа магнтудата какопроизвод на логаритмот на сјајноста на еден објект.<br />
==== Мерење на растојание ====
Со движењето на Земјата околу Сонцето, оддалечените ѕвезди изгледаат како да се движат на небото. Ова наводно поместување, познато како ѕвездена паралакса, е најосетно во интервали од шест месеци, кога Земјата се наоѓа на спротивните страни на нејзината орбита околу Сонцето. Астрономите ја користат ѕвездената паралакса за да ја одредат оддалеченоста на ѕвездата од Земјата со помош на аголот кој таа ѕвезда го прави со двете нејзини паралактички положби. Колку е поголема оддалеченоста на Земјата, толку нејзината паралакса е помала. Најблиската ѕвезда, Алфа Кентаур, е околу 260 000 пати подалеку од Земјата отколку Сонцето. Првите растојанија на ѕвезди беа измерени независно од астрономи во 1838 година.<br />
 
==== Состав и енергија на ѕвездите ====
Ред 97:
'''Млечниот Пат''' претставува галаксија чии ѕвезди се гравитационо поврзани и ротираат околу еден оддалечен центар. Располагањето со информации за оддалеченоста на ѕвездите е од големо значење при проучувањето на структурата на Млечниот Пат. Методот за одредување на овие растојание преку паралаксата може да се примени само за неколкуте илјадници поблиски ѕвезди. Постои посебна класа на ѕвезди, наречени Цефеиди променливи, чија сјајност варира на периоди што зависи од количеството на светлина која тие всушност ја зрачат (во споредба со количеството нивна светлина која стигнува до Земјата). Споредбата помеѓу овие две количества на светлина служи за одредување на нивните растојанија. Потпирајќи се на откритието за односот помеѓу периодот и сјајноста од страна на американскиот астроном Хенриета Свон Ливит, американскиот астроном Харлоу Шејпли ги искористи Цефеидите променливи да ја измери големината на Млечниот Пат. На светлосен зрак кој се движи со брзина од околу 300 000 км/сек му се потребни 400 000 години да го помине Млечниот Пат од едниот до другиот негов крај. Видливата спирала изнесува некаде помалку од половината нејзина ширина. Сé на сé, Млечниот Пат брои околу трилион ѕвезди кои ротираат околу заеднички центар. Сонцето, кое е лоцирано на околу 30 000 светлосни години од центарот на Млечниот Пат, патува со брзина од околу 210 км/сек и прави една цела револуција приближно на секои 200 милиони години.<br />
[[Млечниот Пат]] вклучува и огромни количини на честички од прав и гас кои се распрскани помеѓу ѕвездите. Оваа меѓуѕвездена материја í попречува на видливата светлина која доаѓа од далечните ѕвезди така што набљудувачите на Земјата не можат целосно да ги видат далечните делови на Млечниот Пат. Со откритието од 1932 година на американскиот електро инженер Карл Г. Џенски дека радио брановите се емитуваат во Млечниот Пат, почнува да се развива нова гранка на астрономијата. Подоцнежните истражувања укажаа на тоа дека оваа радијација доаѓа делумно од меѓуѕвездента материја, а делумно од дискретни извори формално наречени радио ѕвезди. Радио брановите, кои доаѓаат од далечните делови на Млечниот Пат можат да пенетрираат во меѓуѕвездената материја која не ја пропушта видливата светлина и со тоа им оневозможува на астрономите да ги набљудуваат регионите скриени за оптичките инструменти. Од таквите набљудувања беше констатирано дека Млечниот Пат претставува спирална галаксија со сплескана испакнатост од стари ѕвезди, надворешен диск од топли млади ѕвезди кои ги градат спиралните продолжетоци и огромен, издолжен ореол од бледи ѕвезди. Со набљудувањата на надворешниот диск во 1986 со радио телескоп, за прв пат во историјата е забележано раѓање на ѕвезда, во соѕвездието Ophicus или Серпентинскиот носач, оддалечено 500 светлосни години.
Сé до 1980-тите јадрото на Млечниот пат претставуваше мистериозен регион, затскриен од темни облаци на меѓуѕвезден прав. Астрономите почнаа постепено да ја градат целата таа слика на овој регион во 1983 година, кога всушност беше лансиран сателитот ИРАС (Infrared Astronomy Satelite). Сензорите на ИРАС ослободени од попречувачките ефекти на земјината атмосфера успеаа да ги снимат со досега невидена деталност позициите и облиците на огромен број извори на инфрацрвена енергија кои ја зафаќаат сржта на Млечниот Пат. Помеѓу овие беше откриен и еден масивен објект, кој не претсатвува ѕвезда, а е премногу компактен за да биде ѕвездена групација и за кој постои можност да се докаже дека е црна јама.<br />
 
=== Вселена ===
И покрај неговата неверојатна големина, Млечниот Пат е само еден од бројните големи ѕвездени системи, наречени галаксии, кои ја населуват познатата вселена. Во 1924 година студиите спроведени од американскиот астроном Едвин Хабл го дадоа одговорот за природата на спиралните облаци, укажувајќи на нив како на посебни галаксии, слични на Млечниот Пат; други, пак, галаксии се сфероидни, без спирални продолжетоци; а има и такви со неправилни форми. Со помош на еден од најголемите оптички телескопи на светот кој се наоѓа во опсерваторијата Мауна Кеа, Хаваи, откриени се галаксии оддалечни повеќе од 10 милијарди светлосни години од Земјата.<br />
Спектралните анализи на светлината која доаѓа од надворешните галаксии покажува дека ѕвездите од кои се составени овие системи се изградени од оние хемиски елементи кои се познати и на Земјата. Тие, исто така, укажуваат на тоа дека сите галаксии се оддалечуваат од Млечниот Пат. Колку е подалечна една галаксија толку побрза е нејзината рецесија. Ова е земено како доказ дека вселената се шири и дека потекнува од експлозијата на неверојатно жешка и густа состојба на материја. Можните состојби кои можеби ја иницирале експлозијата се опфатени во космолошката теорија од раните 1980-ти, позната како инфлататорна теорија. Оттогаш радијацијата од големиот прасок станува сè поладна; нејзината моментална температура изнесува околу 3 К над апсолутната нула (околу -273,16º С односно -454º &nbsp;°F). При оваа температура, радијацијата која доаѓа од сите насоки била откриена во 1965 од страна на американскиот физичар Арно Пензијас и Роберт В. Вилсон што претставува моментно најдобриот индикатор на раната историја на вселената (позадинаска радијација). Во прилог на теоријата за големиот прасок е и Ајнштајновата теорија на релативност.<br />
Квазарите, кои биле откриени во 1950-тите со помош на радио телескопи, за многу астрономи претставуваат енергетски јадра на многу оддалечени галаксии. Од досега непознати причини, тие ја маскираат светлината од нивните базични галаксии. Тие често се појавуваат во крајно оддалечени групации на галаксии. Спектралните линии на квазарите покажуваат многу големи поместувања кон црвено redshift што укажува на тоа дека овие објекти се оддалечуваат од нашата галаксија со 80% од брзината на светлината. Нивната наводна огромна брзина исто така значи дека тие спаѓаат меѓу најдалечните космолошки објекти. Во 1991 беше откриен квазар оддалечен 12 милијарди светлосни години со помош на рефлекторот во [[Паломарска опсерваторија|Паломарската опсерваторијар]].<br />
== Основни закони ==
Ред 115:
'''Вториот Кеплеров закон''' гласи: При движењето на планетите околу Сонцето нивните радиус вектори опишуваат еднакви плоштини за еднакви временски интервали.<br />
Согласно овој закон, планетата кога е поблиску до Сонцето се движи со поголема брзина одколку кога е подалеку од Сонцето. Планетата има максимална брзина кога поминува низ перихелот и минималма - кога поминува низ афелот.<br />
'''Третиот Кеплеров закон''' гласи: Квадратите на периодите на обиколка на планетите околу Сонцето се однесуваат така, како кубовите на нивното средно растојание до Сонцето<br />
 
==Астрономијата како тема во уметноста и во популарната култура==
Ред 147:
* Ruggles, C.L.N. (2005), Ancient Astronomy, pages 354-355. ABC-Clio.
* Krupp, E.C. (1988). "Light in the Temples", in C.L.N. Ruggles: Records in Stone: Papers in Memory of Alexander Thom.
* Henry Smith Williams, The Great Astronomers (New York: Simon and Schuster, 1930), pp. 99-102&nbsp;99–102 describes "the record of astronomical progress" from the Council of Nicea (325 AD) to the time of Copernicus (1543 AD) on four blank pages.
* Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999)