Тавтологија (логика)
Тавтологија — исказ во логиката кој содржи повеќе од еден подисказ, кој е вистинит без разлика на вистинитоста на неговите делови. На пример, исказот „Или сите гаврани се црни или не сите од нив се црни“ е тавтологија, бидејќи е вистинит без разлика на тоа која боја се гавраните. Формално изразено, како исказ со X кој стои за „Сите гаврани се црни“ би било
- ,
што е тавтологија, обележана како , бидејќи без разлика на вистинитоста на X, еден од дисјунктите е вистинит, а со тоа и целиот исказ. Знакот значи „генеричка“ тавтологија таму каде каква било тавтологија би завршила работа, без конкретно да укаже на тоа каде лежи тавтологијата.
Исказ како
кој е секогаш невистинит без разлика на вистинитоста на неговите делови се нарекува контрадикција на недоследост и се бележи како .
Кај исказната логика, знакот or може да се постави пред реченица или формули за да означи дека тоа е тавтологија. Празниот простор лево од знакот значи дека не се потребни никакви претпоставки за логично дедуцирање на материјал десно од знакот. Така можеме да се изразиме:
Клучните вистини за тавтологија се 1) и 2) . Значи, не тавтологија е недолседност и не недоследност е тавтологија.
Тавтологии наспроти валидности
уредиПредикатната логика, често разликува помеѓу тавтологии и валидности (или логики вистини). Вака гледан, еден исказ се смета за тавтологија ако и само ако истиот претставува валидност во исказната логика (т.е. кога сè во опсегот на еден квантификатор се гледа како црна кутија). Така на пример исказот
е тавтологија бидејќи може да се напише и како
а ова е тавтологија. Наспроти тоа, исказот
би бил валидност, но не тавтологија, иако е вистинит во било која интерпретација, бидејќи не постои начин истиот да се изрази како тавтологија во исказната логика. Оваа разлика не секогаш се прави.
Откривање на тавтологии
уредиДелотворна постапка за проверка дали една исказна формула е тавтологија или не е по пат на таблици на вистинитост. Меѓутоа како делотворна процедура, таблиците на вистинитост се ограничени од се ограничени од фактот што бројот на логички интерпретации (или припишувања на вистинитости) кои се проверени се зголемува како 2k, каде k е бројот на променливи во формулата. Алгебарски, симболички или трансформациони методи за упростување на едан формула набрзо стануваат решенија за овие сложени пребарувања со таблици.