Паскалово правило
Паскалово правило — комбинаторно равенство за биномни коефициенти. Според правилото, за секој природен број n важи:
каде е биномен коефициент. Ова обично се запишува и како:
Правилото е именувано по францускиот математичар Блез Паскал.
Комбинаторен доказ
уредиПаскаловото правило има интуитивно комбинаторно значење. Ако се потсетиме дека означува на колку многу начини може да се избере подмножество со b елементи од множество со a елементи. Поради тоа, десната страна на равенството претставува пребројување за тоа на колку начини може да се избере подмножество со k елементи од множество со n елементи.
Претпоставуваме дека во множеството со n елементи се разликува некој член x. На тој начин, секој пат кога се избира подмножество со k елементи, постојат две можности: x се наоѓа во подмножеството или не. Ако x се наоѓа во подмножеството, потребно е да се изберат уште само k - 1 елементи (затоа што е познато дека x ќе биде во подмножеството) од преостанатите n - 1 елементи. Ова може да биде направено на . Ако x не се наоѓа во подмножеството, потребно е да се изберат сите k елементи од n - 1 елементи што се разликуваат од x. Ова може да биде направено на начини. Оттука може да се заклучи дека бројот на начини за да избере подмножество со k елементи од множество со n елементи, што изнесува , е исто така еднакво на
Алгебарски доказ
уредиВо алгебарскиот доказ е потребно да се докаже следното:
Со разложување на десната страна од равенството се добива:
Воопштување
уредиНека и . Тогаш, следува дека:
Поврзано
уредиКористена литература
уреди- Merris, Russell. Combinatorics. John Wiley & Sons. 2003 ISBN 978-0-471-26296-1
Надворешни врски
уреди- Central binomial coefficient - PlanetMath (англиски)
- Binomial coefficient - PlanetMath (англиски)
- Pascal's triangle - PlanetMath (англиски)