Еренфестова теорема
Еренфестова теорема — теорема во физиката именувана според австрискиот теоретски физичар Паул Еренфест . Го поврзува временскиот извод на очекуваната вредност за квантномеханички оператор во однос на очекуваната вредност на комутаторот на тој оператор со помош на Хамилтоновиот оператор на системот и на овој начин во квантната механика, равенките на движење што се аналог на Њутнвите равенки важат за средните вредности на соодветните величини и овој резултат е познат како Еренфестова теорема.[1]
Равенката на Еренфестовата теорема може да се запише како [2]
каде A е некој квантномеханички оператор е очекуваната вредност.
Еренфестовата теорема е најочигледно присутна во Хајзенберговата претстава на квантната механика, каде ја претставува очекуваната вредност на Хајзенберговата равенка на движење.
Теоремата е во потесна врска со Лиувиловата теорема од Хамилтоновата механика, која ги вклучува и Поасоновите загради како замена за комутаторот. Дираковото практично правило го потврдува фактот во квантната механика дека присуството на комутатор е исто со тврдењето во класичната механика каде комутаторот е заменет со Поасонова заграда и е помножен со iħ. Ова овозможува очекуваните вредности на операторот да се поведуваат по соодветните класични равенки за движење.
Наводи
уреди- ↑ Ивановски, Ѓеорѓи (1999). Квантна механика нерелативистичка теорија на една честичка. универзитет Св. Кирил и Методиј Скопје. стр. 51–52.
- ↑ Смит, Хенрик (1991). Вовед во квантна механика. World Scientific Pub Co Inс. стр. 108–109. ISBN 978-9810204754. Не се допушта закосување или задебелување во:
|publisher=
(help)