Време-просторна симетрија
Време-простор симетрија се одлики на време-простор дека може да се опише како излагање на некоја форма на симетричност. Улогата на симетричност во физиката е важно во поедноставување на решенија на многу проблеми. Време-простор симетријата се користат во изучувањето на точните решенија на Ајнштајновите равенки за полето на општата релативност. Време-простор симетријата се разликува од внатрешните симетрии.
Физички мотивација
уредиФизичките проблеми често се испитуваат и решаваат со забележливи одлики кои имаат некаква форма на симетрија. На пример, во решението на Шварцшилд, улогата на сферичната симетрија е важна за да се добие решението на Шварцшилд и да се одредат физичките последици од оваа симетрија (како што е непостоењето на гравитациското зрачење во сферично пулсирачка ѕвезда). Во космолошки проблеми, симетријата има улога во космолошкиот принцип кој го ограничува типот на универзуми кои се во согласност со големите набљудувања (на пример, метриката Фридман-Лематре-Робертсон-Вокер (FLRW)). Симметриите обично бараат некоја форма на зачувување на својствата, од кои најважни се општотата релативност:
- зачувување на геодезијата на просторот за време
- зачувување на метричкиот тензор
- зачувување на тензорот на закривеност
Овие и други симетрии ќе бидат разгледани подолу подетално. Ова својство за зачувување кое симметрии обично поседуваат (алудирано на погоре) може да се користи за да се мотивира корисна дефиниција на овие симетрии себе.