Алтернативна хипотеза

Формулација на хипотези

уреди

Кога истражувачот сака да провери нова претпоставка,нова теорија,тој прво формулира хипотеза или тврдење за коешто претпоставува дека е точно. Важно е да се разбере која е разликата меѓу статистичкото оценување на непознатите параметри и проверување на хипотези за непознатите параметри како два основни сегмента на статистичкото заклучување.[1] За разлика од оценувањето,со проверувањето на хипотези се утврдува дали таа популација поседува одредена одлика односно дали параметарот поседува одредена вредност.Тврдењата за популациските параметри се проверуваат така што се бира примерок,се пресметуваат соодветни статистики,па по испитување на резултатите од примерокот се донесува одлука дали да се прифати или не тврдењето за некоја одлика на популацијата. Со статистички речник искажано,хипотезата што сака да ја востанови истражувачот, се вика алтернативна хипотеза или истражувачка хипотеза. Спротивност на алтернативната хипотеза е нулта хипотеза. И двете хипотези дефинираат две различни состојби на популациските параметри и не можат истовремено да бидат точни и вистинити.

Алтернативна хипотеза

уреди

Алтернативната или истражувачката хипотеза се означува со Ha или H1 и е онаа хипотеза за која истражувачот прибира докази да ја потврди.Најчесто ги содржи сите вредности кои може да ги има параметарот Мх,коишто не се опфатени со нултата хипотеза.Таа е дадена во облик на сложена хипотеза.[2].При поверувањето на хипотезите ,алтернативната(сложена или истражувачка)и нултата хипотеза се две ривални хипотези кои се споредуваат со статистичка проверка на хипотези.Пример:Mногу години се набљудувал квалитетот на водата на поток и проверката е составен од нултата хипотеза која гласи дека нема промена на клвалитетот на водата помеѓу првата и втората половина на податоците во однос на алтернативната која гласи дека квалитетот е посиромашен во втората половина од истраженото.[3]

Постапка при проверување на статистичките хипотези

уреди

При проверувањето на статистичките хипотези најчесто се користи т.н класична постапка која ја спроведуваме во неколку етапи:

  • Ја формулираме нултата и алтернативната хипотеза

-Нултата и алтернативната хипотеза претставуваат две прецизни,помеѓу себе исклучувачки тврдења или претпоставки за вредноста на параметрите на основната маса.

  • Го вршиме изборот на статистика на проверката

-Од реализираната вредност на статистиката на проверката врз основа на едно случајно избран примерок зависи дали ќе ја офрлиме или прифатиме Н1

  • Вршиме избор на т.н. ниво на значајност на проверката, α

-При класичната постапка на проверка на хипотезите вообичаено е субјектот на одлучувањето однапред да го избере саканото ниво на значајност на проверката, α. Тоа значи дека тој свесно ја контролира веројатноста дека ќе ја отфрли точната нулта хипотеза,односно дека ќе ја прифати алтернативната.Меѓутоа во најголем број случаи,статистичкото заклучување(статистичкиот суд) се засновува на информацијата која сме ја добиле со еден случајно избран примерок и поради тоа со проверувањето не можеме апсолутно точно да ја утврдиме вистинитоста на хипотезата ,бидејќи таа се однесува на целокупното основно множество.

  • Го формулираме правилото врз основа на кое одлучуваме дали ја прифаќаме или отфрламе алтернативната хипотеза

-При самата постапка на проверувањето на хипотезата многу е важно да се определи распоредот на параметарот на примерокот,кој служи како основа за проверување на хипотезата за вредноста на параметарот на множеството.

  • Го избираме примерокот и ја пресметуваме вредноста на статистиката на проверката
  • Донесуваме одлука за отфрлање или неотфрлање на нултата хипотеза ( прифаќање или неприфаќање на алтернативната хипотеза)

Облици на нултата и алтернативната хипотеза:

уреди
  1. Ho:Mx=Mo ; H1:Mx≠Mo
  2. Ho:Mx≤Mo ; H1:Mx>Mo
  3. Ho:Mx≥Mo ; H1:Mx<Mo[4]

Област на прифаќање и отфрлање на алтернативната хипотеза

уреди

Положбата на областа на отфрлање е детерминирана со карактерот на алтернативната хипотеза (Н1).

  • Ако со алтернативната хипотеза се определува насоката на разликата,тогаш областа на отфрлање ќе се наоѓа само на едната страна на распоредот.Во овој случај имаме примена на еднострана проверка (унилатерална проверка) на хипотеза.Едностраната проверка е онаа каде што алтернативната хипотеза е со насока и ги вклучува симболите “<“ или “>“. Ги следи само отстапувањата во една насока.Заради тоа се разликува и процедурата за утврдување на критичните вредности,како и правилата на одлучување на кое се темели конечната одлука. Може да биде левостран и десностран.

Еднонасочна проверка (левострана):

 

Еднонасочна проверка (деснострана):

 
  • Проверката која ги следи отстапувањата кај алтернативната хипотеза во две насоки,притоа критичната област е симетрично поставена на двата краја на хипотетичниот распоред на веројатностите се нарекува двострана проверка на хипотеза.Двостраната проверка на хипотеза е онаа каде алтернативната хипотеза не прецизира отстапување од Но во одредена насока; така што алтернативната хипотеза е одредена со знакот “≠“. Тоа значи дека ризикот α симетрично се распоредува на краевите на распоредот на веројатностите,па оттаму и областа на прифаќање од двете страни е ограничена со областа на отфрлање на нултата хипотеза.
 

Наводи

уреди
  1. Статистичка анализа - Треневска Благоева д-р Калина
  2. Статистика за бизнис и економија, второ издание, д-р Славе Ристески
  3. http://en.wikipedia.org/wiki/Alternative_hypothesis
  4. Статистика за бизнис и економија,четврто издание - Скопје,2010 - д-р Славе Ристески, д-р Драган Тевдовски