Во математиката, прост број е природен број кој има точно два (различни) природни броја за делители, тоа се 1 и самиот тој прост број. Постојат бесконечно многу прости броеви како што покажал Евклид околу 300 година пр.н.е. Првите 30 прости броеви се: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, и 113.

2 е единствениот парен прост број, па терминот непарен прост број се однесува на прост број поголем од 2.

Прости броеви се природни броеви поголеми од еден кои не се производи на два помали броја.

Со изучувањето на простите броеви се занимава теоријата на броеви, дел од математиката кој ги проучува природните броеви. Простите броеви се тема на интензивни истражувања и се дел од фундаментални прашања кои повеќе од еден век биле неодговорени (на пр. Римановата хипотеза). Проблемот на моделирање на распоредот на простите броеви е популарна тема меѓу оние математичари кои се занимаваат со теоријата на броеви: наизглед простите броеви се произволно распоредени, но „општата“ распределба на простите броеви следи добро дефинирани закони.

Поимот за прост број се сретнува во многу дисциплини на математиката.

Природните броеви што имаат повеќе од два делитела се викаат сложени броеви. Пример: 4, 6, 8, 9 се сложени броеви.

1 не е ниту прост ниту сложен број.

Прости делители

уреди

Фундаменталната теорема на аритметиката тврди дека секој позитивен цел број поголем од 1 може да се запише како производ од еден или повеќе прости броеви на единствен начин (ако не се земе предвид распоредот на множителите). Истиот прост број може да се појави повеќепати. Значи простите броеви може да се сметаат за „основни единици на градба“ на природните броеви. На пример можеме да запишеме:

 

Која било друга факторизација на 23244 како производ од прости броеви ќе биде идентична на дадената, освен редоследот на множителите. Во практиката постојат повеќе алгоритми (постапки) за факторизација на прости множители на поголеми броеви.