Отвори го главното мени

Во релативистичката теорија на физиката, Лоренцовиот скалар е израз, формиран од предмети од теоријата, која евалуира на скалар, непроменлив под било каква Лоренцова трансформација. Лоренцовиот скалар е генериран од на пр., скаларен производ на вектори, или од тензорите на теоријата. Додека компонентите на векторите и тензорите се вообичаено променети со Лоренцовите трансформации, Лоренцовиот скалар останува непроменет.

Лоренцовиот скалар не секогаш се смета дека е непроменлив скалар во математичка смисла, но добиената скаларна вредност е непроменлива под било која основна трансформација применета на векторскиот простор, на кој се базира разгледуваната теорија. Едноставен Лоренцов скалар во Минковскиев простор е растојание во просторот ("должина" од нивната разлика) на два фиксни настани во просторот. Додека "позицијата" -4-вектори на настаните се менуваат помеѓу различните инерцијални рамки, нивното растојание во просторот останува непроменето под соодветната Лоренцова трансформација. Други примери за Лоренцов скалар се "должината" на 4-брзини (види подоле), или Ричиево искривување во точка во просторот од Општата теорија за релативноста,која е контракција на тензорот на Римановата кривина .

Едноставни скалари во специјалната релативностУреди

Должината на позициониот векторУреди

Податотека:Fermi walker 1.png
Светски линии за две честички со различни брзини.

Во специјалната теорија за релативноста локацијата на честичка во 4-димензионалниот простор е дадена со

 

каде   е положбата во 3-димензионалниот простор на честичката,   е брзината во 3-димензионалниот простор и   е брзината на светлината.

"Должината" на векторот е Лоренцов скалар и е даден со

 

каде   е вистинско време мерено со часовник во остатокот од рамката на честичката и Минковскиевата метрика е дадена со

 .

Ова е метрика слична на времето.

Често е употребен алтернативниот потпис на Минковскиевата метрика во кој знаците на оние се обратни.

 .

Ова е метрика слична на просторот.

Во Минковскиевата метрика просторот како интервал   е дефиниран како

 .

Ние ја користиме Минковскиевата метрика слична на просторот и во останатиот дел од поглавјето.

Должината на векторот на брзинатаУреди

Податотека:Fermi walker 2.png
Вектори на брзина во просторот за честичка со две различни брзини. Во релативноста, забрзувањето е еквивалентно на ротацијата во просторот

Брзината во просторот е дефинирана како

 

каде

 .

Магнитудата на 4-брзина е Лоренцов скалар,

 .

Оттука, c е Лоренцов скалар.

Внатрешниот производ на забрзувањето и брзинатаУреди

4-забрзување го дава

 .

4-забрзување е секогаш нормално на 4-брзина

 .

Затоа, можеме да го сметаме забрзувањето во просторот како едноставна ротација на 4-брзина. Внатрешниот производ на забрзувањето и брзината е Лоренцов скалар и е нула. Оваа ротација е едноставно израз на конзервација на енергија:

 

каде   е енергијата на честичката и   е 3-сила на честичката.

Енергија, останатата маса на честичката, 3-импулс и 3 брзина од 4-импулсУреди

4-импулс на честичката е

 

каде   е останатата маса на честичката,   е импулс во 3-простор, и

 

е енергијата на честичката.

Мерење на енергијата на честичкатаУреди

Да се разгледа втората честичка со 4-брзина   и 3-брзина  . Во остатокот од рамката на втората честичка внатрешниот производ   with   е пропорционален на енергијата на првата честичка

 

каде индексот 1 ја означува првата честичка.

Врската е точна во остатокот од рамката на втората честичка, таа е точна во секоја референтна рамка.  , енергијата на првата честичка во рамката на втората честичка е Лоренцов скалар. Затоа,

 

во било која инерцијална референтна рамка, каде   се уште е енергијата на првата честичка во рамката на втората честичка.

Мерење на останатата маса на честичкатаУреди

Во остатокот на рамката на честичката, внатрешниот производ на импулсот е

 .

Затоа, останатата маса (m) е Лоренцов скалар. Врската останува точна независно од рамката во која се пресметува внатрешниот производ. Во многу случаи останатата маса е запишана како   за да се избегне забуна со релативистичката маса, која е  

Мерење на 3-импулс на честичкатаУреди

Забележи го следново

 .

Квадратот на магнитудата на 3-импулсот на честичката, мерена во рамките на втората честичка, е Лоренцов скалар.

Мерење на 3-брзина на честичкатаУреди

3-брзина, во рамката на втората честичка, може да се конструира од два Лоренцови скалари.

 .

Покомплицирани скалариУреди

Скаларите, исто така, може да се конструираат од тензорите и векторите, од контракцијата на тензорите(како  ), или комбинации на контракции на тензори и вектори (како  ).

НаводиУреди

  • Misner, Charles; Thorne, Kip S. & Wheeler, John Archibald (1973). Gravitation. San Francisco: W. H. Freeman. ISBN 0-7167-0344-0. 
  • Landau, L. D. & Lifshitz, E. M. (1975). Classical Theory of Fields (Fourth Revised English Edition). Oxford: Pergamon. ISBN 0-08-018176-7.