Спектроскопија: Разлика помеѓу преработките

[проверена преработка][проверена преработка]
Избришана содржина Додадена содржина
→‎top: Јазично подобрување, replaced: ротациона → вртежна
с →‎top: Јазично подобрување, replaced: Радијацијата → Зрачењето
Ред 15:
Пронаоѓач (сетилник)
 
Електромагнетното зрачење може да биде насочено од изворот на примерокот, што може да го апсорбира, емитира или да рефлектира. Доколку предметот емитира зрачење, изворот на зрачење е самиот предмет. РадијацијатаЗрачењето од примерокот води кон едед монохроматор, кој ја пропушта само едната бранова должина од детекторот. Детекторот го претвора зрачниот сигнал, кој може да биде запишана во еден опсег. Како монохроматор се користи во поново време Микелсонов интерферометар кој ни овозможува повеќе бранови должини во дадено време. Спектарот што се добива со користење на Микелсоновиот интерферометар е наречен спектар во временски домен, кој со користење на математички равенства и процесот на трансформација на Фурие од овој спектар во спектарот во фреквентен домен, што е еднакво на спектарот добиен од конвенционалните монохроматори.
 
Како извори на зрачење се користат волфрамови светилки, халогени светилки, ксенон светилките, ултравиолетови лампи кои користат [[девтериум]]. Како извор на зрачење може да се користат и ласери чија бранова должина може да се прилагоди. Во случај на ласер, монохроматорот не е потребен, бидејќи ласерите емитираат зрачење со одредени бранова должина, што е многу подобра опција отколку кога светлината доаѓа од монохроматор. Спектроскопијата, кога се користи ласер се нарекува спектроскопија со висока резолуција. Синхротрон зрачење се добива кога синхротрон се користи како извор на зрачење, бидејќи таа опфаќа поширок спектар од спектрален и поголем интензитет. Понекогаш можете да се користи и светлото од пламен или искрење.