Степенување: Разлика помеѓу преработките

[проверена преработка][проверена преработка]
Избришана содржина Додадена содржина
с Замена со македонски назив на предлошка, replaced: Cite web → Наведена мрежна страница, cite web → Наведена мрежна страница (11)
с Замена со македонски назив на предлошка, replaced: cite book → Наведена книга (6)
Ред 92:
 
==Експонентот е позитивен реален број==
Доколку основата ''b'' е позитивен реален број, а бидејќи секој ирационален број ''х'' може да се приближува со рационален број ''r'', степенување со експонент ''х'', т.е. ''b''<sup>''х''</sup> може да се дефинира преку [[непрекината функција|непрекинатост]] со <ref name=Denlinger>{{citeНаведена bookкнига |title=Elements of Real Analysis |last=Denlinger |first=Charles G. |publisher=Jones and Bartlett |year=2011 |pages=278–283 |isbn=978-0-7637-7947-4}}</ref>
:<math> b^x = \lim_{r \to x} b^r\quad(r\in\mathbb Q,\,x\in\mathbb R)</math>
<!-- Тука треба нешто за кога b е негативен ирационален број... -->
Ред 340:
 
The number ''e''<sup>2''πi'' ({{frac|1|''n''}})</sup> is the primitive ''n''th root of unity with the smallest positive [[complex argument]]. (It is sometimes called the '''principal ''n''th root of unity''', although this terminology is not universal and should not be confused with the [[principal value]] of <sup>''n''</sup>√<span style="text-decoration:overline">1</span>, which is 1.<ref>This definition of a principal root of unity can be found in:
*{{citeНаведена bookкнига | title = Introduction to Algorithms | edition = second | author = Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein | publisher = MIT Press | year = 2001 | isbn = 0-262-03293-7}} [http://highered.mcgraw-hill.com/sites/0070131511/student_view0/chapter30/glossary.html Online resource]
*{{citeНаведена bookкнига | title = Difference Equations: From Rabbits to Chaos | edition = Undergraduate Texts in Mathematics | author = Paul Cull, Mary Flahive, and Robby Robson | year = 2005 | publisher = Springer | isbn = 0-387-23234-6 }} Defined on page 351, available on Google books.
* "[http://mathworld.wolfram.com/PrincipalRootofUnity.html Principal root of unity]", MathWorld.</ref>)
 
Ред 440:
*The [[#Combinatorial interpretation|combinatorial interpretation]] of 0<sup>0</sup> is the number of [[empty tuple]]s of elements from the empty set. There is exactly one empty tuple.
*Equivalently, the [[#Exponentiation over sets|set-theoretic interpretation]] of 0<sup>0</sup> is the number of functions from the empty set to the empty set. There is exactly one such function, the [[empty function]].<ref name="Bourbaki">N. Bourbaki, Elements of Mathematics, Theory of Sets, Springer-Verlag, 2004, III.§3.5.</ref>
*The notation <math>\scriptstyle \sum a_nx^n</math> for [[polynomial]]s and [[power series]] rely on defining 0<sup>0</sup> = 1. Identities like <math>\scriptstyle \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n</math> and <math>\scriptstyle e^{x} = \sum_{n=0}^{\infty} \frac{x^n}{n!}</math> and the [[binomial theorem]] <math>\scriptstyle (1 + x)^n = \sum_{k = 0}^n \binom{n}{k} x^k</math> are not valid for {{nowrap|1=''x'' = 0}} unless {{nowrap|1=0<sup>0</sup> = 1}}.<ref>"Some textbooks leave the quantity 0<sup>0</sup> undefined, because the functions ''x''<sup>0</sup> and 0<sup>''x''</sup> have different limiting values when ''x'' decreases to 0. But this is a mistake. We must define {{nowrap|1=''x''<sup>0</sup> = 1}}, for all ''x'', if the binomial theorem is to be valid when {{nowrap|1=''x'' = 0}}, {{nowrap|1=''y'' = 0}}, and/or {{nowrap|1=''x'' = −''y''}}. The binomial theorem is too important to be arbitrarily restricted! By contrast, the function 0<sup>''x''</sup> is quite unimportant".{{citeНаведена bookкнига|title=[[Concrete Mathematics]]|edition=1st|publisher=Addison Wesley Longman Publishing Co|date=1989-01-05|isbn=0-201-14236-8|author=[[Ronald Graham]], [[Donald Knuth]], and [[Oren Patashnik]]|page=162|chapter=Binomial coefficients}}</ref>
*In [[differential calculus]], the [[power rule]] <math>\scriptstyle \frac{d}{dx} x^n = nx^{n-1}</math> is not valid for {{nowrap|1=''n'' = 1}} at {{nowrap|1=''x'' = 0}} unless {{nowrap|1=0<sup>0</sup> = 1}}.
 
===In analysis===
On the other hand, when 0<sup>0</sup> arises when trying to determine a [[limit of a function|limit]] of the form <math>\scriptstyle \lim_{x\rarr 0} f(x)^{g(x)}</math>, it must be handled as an [[indeterminate form]].
*Limits involving algebraic operations can often be evaluated by replacing subexpressions by their limits; if the resulting expression does not determine the original limit, the expression is known as an indeterminate form.<ref>{{citeНаведена bookкнига|first=S. C.|last=Malik |coauthors=Savita Arora|year=1992|title=Mathematical Analysis|page=223|isbn=978-81-224-0323-7|quote=In general the limit of φ(''x'')/ψ(''x'') when ''x''=''a'' in case the limits of both the functions exist is equal to the limit of the numerator divided by the denominator. But what happens when both limits are zero? The division (0/0) then becomes meaningless. A case like this is known as an indeterminate form. Other such forms are ∞/∞ 0&nbsp;&times;&nbsp;∞, ∞&nbsp;−&nbsp;∞, 0<sup>0</sup>, 1<sup>∞</sup> and ∞<sup>0</sup>.|publisher=Wiley|location=New York}}</ref> In fact, when ''f''(''t'') and ''g''(''t'') are real-valued functions both approaching 0 (as ''t'' approaches a real number or ±∞), with ''f''(''t'') > 0, the function ''f''(''t'')<sup>''g''(''t'')</sup> need not approach 1; depending on ''f'' and ''g'', the limit of ''f''(''t'')<sup>''g''(''t'')</sup> can be any nonnegative real number or +∞, or it can be [[undefined (mathematics)|undefined]]. For example, the functions below are of the form ''f''(''t'')<sup>''g''(''t'')</sup> with ''f''(''t''),''g''(''t'')&nbsp;→&nbsp;0 as [[one-sided limit|''t''&nbsp;→&nbsp;0<sup>+</sup>]], but the limits are different:
::<math> \lim_{t \to 0^+} {t}^{t} = 1, \quad \lim_{t \to 0^+} \left(e^{-\frac{1}{t^2}}\right)^t = 0, \quad \lim_{t \to 0^+} \left(e^{-\frac{1}{t^2}}\right)^{-t} = +\infty, \quad \lim_{t \to 0^+} \left(e^{-\frac{1}{t}}\right)^{at} = e^{-a}</math>.
 
Ред 463:
 
====IEEE floating point standard====
The [[IEEE 754-2008]] floating point standard is used in the design of most floating point libraries. It recommends a number of different functions for computing a power:<ref>{{citeНаведена bookкнига|title=Handbook of Floating-Point Arithmetic|publisher=Birkhäuser Boston|year=2009|isbn=978-0-8176-4704-9|page=216|author9=Jean-Michel Muller et al}}</ref>
*<tt>pow</tt> treats 0<sup>0</sup> as 1. This is the oldest defined version. If the power is an exact integer the result is the same as for <tt>pown</tt>, otherwise the result is as for <tt>powr</tt> (except for some exceptional cases).
*<tt>pown</tt> treats 0<sup>0</sup> as 1. The power must be an exact integer. The value is defined for negative bases; e.g., <tt>pown(−3,5)</tt> is −243.