Разлика помеѓу преработките на „Нумеричка анализа“

Додадени 3 бајти ,  пред 3 години
нема опис на уредувањето
 
'''Оптимизација''':Да претпоставиме дека продаваме лимонада на тезга, и воочуваме дека при цена 10 денари, можеме да продадеме 197 чаши лимонади на ден, и за секои 0.1денари зголемена цена, продажбата опаѓа за една чаша лимонада на ден. Ако пак продаваме по цена од 14.85 денари, доаѓаме до максимален профит, но поради ограничувањето да нaплатуваме целобројна цена во дени (десети дел од денарот), наплатуваме 14.8 денари или 14.9 денари за чаша ќе добиеме максимален приход од 2205.2 денари на ден.
 
'''Нумеричка интеграција''': Еден од најчестите проблеми со кои се сретнуваме во нумеричката анализа е пресметување на вредности на {\textstyle \int _{a}^{b}f(x)dx} . Нумеричката интеграција во некои случаи е позната како нумеричка квадратура. Познатите методи користат една од Њутн-Котесови формули (како правило на средна точка или Симсоново правило) или Гаусова квадратура. Тие методи се потпираат на стратегијата ,,раздели па владеј,, , т.ш интегралот на релативно голем интервал се дели на повеќе интеграли на мали интервали. Во случаите на голем број величини, каде тие методи се недопустливо скапи и во поглед на компјутерските барања, се приоѓа на примена на Монте-Карловиот или Квази Монте-Карловиот метод или кај умерено голем број величини, се применува методот на ретка мрежа.
 
Методите на ретки мрежи се множество од нумерички техники коишто претставуваат, интегрираат или интерполираат високо димензионални функции. Тие првично биле развиени од страна на рускиот математичар Сергеј Смолак, ученик на Лазар Листерник, и тие се базираат на конструкција на “редок” тензорски производ. Компјутерските алгоритми за ефикасно имплементирање на таквите мрежи подоцна биле развиени од страна на Мајкл Грибл и Кристоф Зенгер.
 
 
'''Диференцијална равенка''': Ако 100 луѓе се насочат да дуваат воздух од еден крај на собата на другиот крај и потоа се пушти перо во воздухот, тогаш што ќе се случи? Перото ќе ја следи струјата на воздухот, која може да биде многу комплексна. Една апроксимација е да се измери брзината со која се дува воздухот во близина на перото во секоја секунда, и да се симулира поместувањето на перото како да се движи во права линија со иста брзина во тек на една секунда, пред повторно да се измери брзината на ветерот. Тоа се нарекува Ојлерова метода на решавање на обична диференцијална равенка.
Полето на оптимизација се дели на неколку подобласти, во зависност од формата на функцијата на целта и од ограничувањата. На пример, линеарното програмирање е такво што функција на целта и ограничувањата се линеарни. Познат метод во линеарното програмирање е Симплекс алгоритам (метод).
Методот на Лагранжови множители може да биде користен за редуцирање на оптимизирачки проблеми со ограничување, до оптимизирачки проблеми без ограничување.
==='''Нумеричка интеграција'''===
'''Нумеричка интеграција''': Еден од најчестите проблеми со кои се сретнуваме во нумеричката анализа е пресметување на вредности на {\textstyle \int _{a}^{b}f(x)dx} . Нумеричката интеграција во некои случаи е позната како нумеричка квадратура. Познатите методи користат една од Њутн-Котесови формули (како правило на средна точка или Симсоново правило) или Гаусова квадратура. Тие методи се потпираат на стратегијата ,,раздели па владеј,, , т.ш интегралот на релативно голем интервал се дели на повеќе интеграли на мали интервали. Во случаите на голем број величини, каде тие методи се недопустливо скапи и во поглед на компјутерските барања, се приоѓа на примена на Монте-Карловиот или Квази Монте-Карловиот метод или кај умерено голем број величини, се применува методот на ретка мрежа.
 
Методите на ретки мрежи се множество од нумерички техники коишто претставуваат, интегрираат или интерполираат високо димензионални функции. Тие првично биле развиени од страна на рускиот математичар Сергеј Смолак, ученик на Лазар Листерник, и тие се базираат на конструкција на “редок” тензорски производ. Компјутерските алгоритми за ефикасно имплементирање на таквите мрежи подоцна биле развиени од страна на Мајкл Грибл и Кристоф Зенгер.
 
=== '''Диференцијални равенки'''===
14

уредувања