Разлика помеѓу преработките на „Нумеричка анализа“

мали поправки
(мали поправки)
{| class="wikitable"
|-
! colspan="2" | Директна метода !
|-
| ||3x^3+4=28
{| class="wikitable"
|-
! colspan="4" | '''Итеративен метод''' !
|-
| '''a''' || '''b''' || '''средина''' || '''f(средина)'''
| '''Време'''|| 0:40|| 1:20|| 2:00
|-
| '''km/h'''|| 140|| 150|| 200180
|}
Ако се направи дискретизација, би требало да каже дека брзината на автомобилот била константна од 0:00 до 0:40, а потоа од 0:40 до 1:20 и конечно од1:20 до 2:00. На пример, вкупното растојание во првите 40 минути е апроксимативно околу (2/3 h × 140 km/h) = 93.3 km. Ова ќе ни овозможи да се процени вкупното поминато растојание како што е 93.3 km +100 km + 120 km = 313.3 km, што е пример за нумеричка интеграција
(што е случај со сите дигитални компјутери).
=== '''Грешки од отсекување и дискретизација''' ===
Грешките од осекувањеотсекување се појавуваат тогаш кога еден итеративен метод ќе заврши или математичката постапка се апроксимира, и приближното решение се разликува од точното решение. Слично на тоа дискретизацијата вклучува дискретизациона грешка затоа што решението на дискретен проблем не се совпаѓа со решението на континуиран проблем. На пример, во итерацијата прикажана на горниот пример за да се пресмета решението на равенката 3х33х^3+4=28, после 10 или повеќе итерации се заклучува дека се добива грубо решение на пример (1.99) . Со тоа имаме грешка од отсекување која изнесува 0.01.
Откако една грешка се генерира таа се зголемува низ целата пресметка. Повторно за пример да ја истакнеме операцијата собирање (,,+,, на калкулатор или компјутер) за која веќе имаме спомнато дека не е прецизна, од тука следува дека и пресметката од видот a+b+c+d+e е уште понепрецизна.
Горе е спомнато дека доаѓа до грешка од скратување кога апроксимираме математичка постапка. Познато е дека за прецизна интеграција на функција неопходно е да се најде збирот на бесконечен број трапезоиди. Но, во пракса меѓутоа можно е да се најде сумата (збирот) само на конечен број на трапезоиди, а со тоа да се приближиме кон точната вредност на интегралот.
'''Диференцијална равенка''': Ако 100 луѓе се насочат да дуваат воздух од еден крај на собата на другиот крај и потоа се пушти перо во воздухот, тогаш што ќе се случи? Перото ќе ја следи струјата на воздухот, која може да биде многу комплексна. Една апроксимација е да се измери брзината со која се дува воздухот во близина на перото во секоја секунда, и да се симулира поместувањето на перото како да се движи во права линија со иста брзина во тек на една секунда, пред повторно да се измери брзината на ветерот. Тоа се нарекува Ојлерова метода на решавање на обична диференцијална равенка.
]]
'''Интерполацијата''' го решава следниот проблем: со дадени вредности на некоја непозната функција во голем број на точки, која вредност ја има функцијата во некоја друга точка која се наоѓа помеѓу веќе дадени точки?.
 
'''Екстраполацијата''' е многу слична на интерполацијата , со таа разлика што сега сакаме да ја најдеме вредноста на непознатата функција во точка која е надвор од дијапазонот на веќе дадените точки.
'''Регресијата''' е исто така слична, но таа зема во предвид дека дадените податоци се непрецизни. Со оглед на некои дадени точки и мерења на вредноста на некоја функција во тие точки (со грешка) ние сакаме да се детерминира (утврди) непозната функција. Методот на најмали квадрати е еден од попопуларните методи за да се постигне оваа цел.
=== '''Решавање на равенки и систем од равенки''' ===
Друг основен проблем е пресметување на решението на дадена равенка. Два случаи најчесто се разликуваат во зависност од тоа дали равенката е линеарна или нелинеарна. На пример, равенката 2х + 5 =3 е линеарна, додека 2х2 2х^2 + 5 = 3 е нелинеарна равенка.
Многу напор е вложен во развојот на методи за решавање на системи од линеарни равенки. Стандардни директни методи односно методите кои користат некои матрични разложувања се Гаусовата елиминација , LU декомпозиција (на долно триаголна матрица L и горно триаголна матрица U), Клоески разложувањe, QR разложување за неквадратни матрици. Итеративните методи како што се Јакоби методот, Гаус-Сејдел метод, последователна над-релаксација и методот на коњугиран градиенградиент најчесто се користат за поголеми системи.
Алгоритмите за наоѓање на корени се користат за решавање на нелинеарни равенки (тие се така наречени затоа што коренот на функцијата е аргумент за кој вредноста на функцијата е нула). Ако функцијата е диференцијабилна и изводот е познат тогаш Њутновиот метод е популарен избор за решавање. Линеаризацијата е уште една техника за решавање на нелинеарни равенки.
=== '''Наоѓање на сопствени вредности или сингуларни вредности на даден проблем''' ===
Ова може да биде направено со користење на методот на конечни елементи, методот на конечни разлики или (особено во областа на инженерството) со користење на методот на конечни волумени. Ова го редуцира проблемот на решението на една алгебарска равенка.
== '''Софтвер''' ==
Од крајот на [[ХХ]]20 век повеќето алгоритми од нумеричка анализа се имплементираат во различни програмски јазици. Netlib-библиотеката содржи различни колекции на софтвер рутини за нумерички проблем, најмногу во FORTRAN и C. Комерцијалните производи имплементираат многу различни нумерички алгоритми вклучувајќи ги и IMSL и NAG библиотеките; бесплатен начин е GNU научната библиотека.
Постојат неколку популарни нумерички компјутерски апликации како што се [[MATLAB]] , TK Solver, S-PLUS, Lab View i IDL како подобар од бесплатните и отворени алтернативни извори како што се Free MAT, Scilab, [[GNU]] Oktave, (слично како [[MATLAB]]), IT ++ ([[C++]] библиотека), [[R]] (слично на S-PLUS) и одредени варијанти на Пајтон([[Python]]). Перформансите значително варираат во голема мера: кога векторските и матричните операции се најчесто брзи, скаларните јамки може да се разликуваат по брзина од повеќе од еден ред на големина.
Многу системи за компјутерска алгебра како Mathematica имаат достапност на аритметика со произволна прецизност која што може да обезбеди повеќе точни резултати. Исто така секој софтверотсофтвер за табеларни пресметувања (како MS Excel) може да се користи за решавање на едноставни проблеми поврзани со нумеричката анализа.
 
== Нумеричко интегрирање ==
29

уредувања