Импулс (механика): Разлика помеѓу преработките

нема опис на уредувањето
Нема опис на уредувањето
сНема опис на уредувањето
|conserved = yes
In [[classical mechanics]], '''linearЛиниски momentum'''импулс, '''translationalтранслаторен momentumимпулс''', orили simplyедноставно само '''momentumимпулс''' ([[plural|pl.]] momenta;е [[SI]]производ unitна [[kilogramМаса|kgмасата]]  и [[meters per secondБрзина|m/sбрзината]]) isна theедно productтело ofи theсе [[mass]]мери andво [[velocity]]единица ofкилограм anна object,метар quantifiedпо inсекунда. [[kilogramДимензија|Димензионално]] metreе perеднаква second|kilogram-metersсо perимпулсот second]].или Itпроизводот isод [[dimensional analysisСила|dimensionally equivalentсилата]] toи [[impulse (physics)Време|impulseвремето]], theи productсе ofмери [[force]]како andњутни [[time]],во quantified in [[newton-second]]sсекунда. [[Newton's second law]] of motion states that the change in linear momentum of a body is equal to the net impulse acting on it. For example, a heavy truck moving rapidly has a large momentum, and it takes a large or prolonged force to get the truck up to this speed, and would take a similarly large or prolonged force to bring it to a stop. If the truck were lighter, or moving more slowly, then it would have less moment
{{Classical mechanics |fundamentals |width=20.55em}}
um and therefore require less impulse to start or stop.
[[File:Newtons cradle animation book 2.gif|right|thumb|A [[Newton'sЊутнова cradleлулашка]] demonstratesкоја го прикажува conservationзачувувањето ofна momentumимпулсот.]]
In a [[closed system]] (one that does not exchange any matter with its surroundings and is not acted on by external forces) the total momentum is constant. This fact, known as the ''law of conservation of momentum'', is implied by [[Newton's laws of motion]].<ref name=FeynmanCh10>{{harvnb|Feynman Vol. 1|loc=Chapter 10}}</ref> Suppose, for example, that two particles interact. Because of the third law, the forces between them are equal and opposite. If the particles are numbered 1 and 2, the second law states that {{math|''F''<sub>1</sub> {{=}} {{sfrac|''dp''<sub>1</sub>|''dt''}}}} and {{math|''F''<sub>2</sub> {{=}} {{sfrac|''dp''<sub>2</sub>|''dt''}}}}. Therefore,
:<math> \frac{d p_1}{d t} = - \frac{d p_2}{d t}, </math>