Разлика помеѓу преработките на „Индуктивност“

Додадени 414 бајти ,  пред 5 години
нема опис на уредувањето
(Создадено преведувајќи ја страницата „Inductance“)
 
Во [[електромагнетизмот]] и [[Електроника|електрониката]], индуктивност е сопственост на [[Електричен спроводник|електричен проводникпроводни]]<nowiki/>к со кој при промена во [[тековната]]  низ него тече, индуцира [[електромоторна сила]] и во самиот проводник или во близина на проводници со меѓусебена индуктивност.<ref name="Sears and Zemansky 1964:743">Sears and Zemansky 1964:743</ref>
 
Овие ефекти се добиени од двете основни забелешки на физиката: постојана струја создава постојано магнетно поле што е опишано со законот [[Oersted's law]],<ref>Sears and Zemansksy 1964:671</ref> и останати временско- магнетни полиња индуцираат електромоторна сила (e.m.f) во близина на проводници, која е опишана со закон на индукција Фарадеј.<ref>Sears and Zemansky 1964:671 -- "The work of Oersted thus demonstrated that magnetic effects could be produced by moving electric charges, and that of Faraday and Henry that currents could be produced by moving magnets."</ref> Според [[Ленцов закон|Lenz's law]],<ref>Sears and Zemansky 1964:731 -- "The direction of an induced current is such as to oppose the cause producing it".</ref> менување на електрична струја низ коло, која содржи индуктивност индуцира напон пропорционален, кој се противи на промената на струјата (авто-индуктивните). На различно поле во ова коло исто така може да се предизвикаат e.m.f. во соседните кола (меѓусебна индуктивност).
 
Терминот индуктивност потекнува од [[Оливер Хевисајд|Oliver Heaviside]] од 1886.<ref>{{Шаблон:Наведена книга|last=Heaviside|first=Oliver|title=Electrical Papers|url=http://books.google.com/?id=bywPAAAAIAAJ&pg=PA271|year=1894|publisher=Macmillan and Company|isbn=|page=271}}</ref>Вообичаено е да се користи симболот L за индуктивност, во чест на физичарот [[Хајнрих Ленц|Heinrich Lenz]].<ref>{{Шаблон:Наведена мрежна страница|author=Glenn Elert|title=The Physics Hypertextbook: Inductance|url=http://hypertextbook.com/physics/electricity/inductance/|year=1998–2008}}</ref><ref>{{Шаблон:Наведена мрежна страница|author=Michael W. Davidson|title=Molecular Expressions: Electricity and Magnetism Introduction: Inductance|url=http://micro.magnet.fsu.edu/electromag/electricity/inductance.html|year=1995–2008}}</ref> Во системот SI, единица за мерење на индуктивност е хенри со х единица симбол, именуван во чест на [[Џозеф Хенри|Joseph Henry]], кој ја открил индуктивноста независно, но не пред, Фарадеј.<ref>{{Шаблон:Наведена мрежна страница|title=A Brief History of Electromagnetism|url=http://web.hep.uiuc.edu/home/serrede/P435/Lecture_Notes/A_Brief_History_of_Electromagnetism.pdf}}</ref>
 
== Коло анализа ==
[[Електронска компонента]] која е наменета за да додадете [[индуктивност]] на колото се нарекува [[намотка]]. Намотките обично се изработени од калеми на жица. Овој дизајн обезбедува две сакани својства, концентрација на магнетното поле во мал физички простор и поврзување на магнетното поле во колото неколку пати.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;" contenteditable="false">&#x5B;''[[Википедија:Се бара извор|<span title="This claim needs references to reliable sources. (July 2015)">citation needed</span>]]''&#x5D;</sup>
 
Односот помеѓу авто-индуктивност L на електрични кола, на напонот v (t), и тековната i (t) преку коло е
А напонот е предизвикан цел со намотки (back EMF), која е еднаква на производот на индуктивност на намотки и стапката на промена на струја низ калем.
 
Сите кола, во практика, имаат некои индуктивности, што може да имаат корисни или штетни ефекти. За [[наместени кола]], индуктивност се користи за обезбедување на фреквенција- селективено коло. Практични намотки може да се користат за да се обезбеди филтрирање, или за складирање на енергија, во дадена мрежа. Индуктивност по единица должина на [[водот]] е една од особините што ја одредува неговата [[карактеристична импеданса]]; балансирање на индуктивност и капацитетот на кабли е важно за нарушување бесплатна [[Телеграф|телеграфија]] и [[Телефон|телефонија]]. Индуктивност на долг AC далноводи влијае на капацитетот моќта на линијата. Чувствителни кола, како што се [[микрофон]] и [[компјутерски мрежни кабли]], може да се користат специјални изградени кабли, ограничување на индуктивна спрега меѓу [[струјните кола]].
 
Генерализација на случајот  К електрични кола со струи im   и напон vm гласи
: <math>\displaystyle v_{m}=\sum\limits_{n=1}^{K}L_{m,n}\frac{di_{n}}{dt}.</math>
Еве, индуктивност L е симетрична матрица. Дијагонали коефициенти Lm, m се нарекуваат коефициент на само-индуктивност, елементи од off-дијагоналата се нарекува коефициент на меѓусебна индуктивност. Коефициентите на индуктивност се постојани, се додека не е вклучен магнетизиран материјал со нелинеарни карактеристики. Ова е директна последица на линеарноста на [[Максвеловите равенки]] во полињата и густината на струјата. Коефициентите на индуктивност постануваат функции на струи во [[Нелинеарен начин на игра|нелинеарни]] случај.
 
== Изведување на правото на индуктивност Фарадеј ==
Равенките на  индуктивност се последица на [[Максвеловите равенки]]. Постои јасна деривација во важен случај на електрични кола која се состои од тенки жици.
 
Во системот на К рудна жица, секоја со една или повеќе жици се врти, [[флукс поврзаност]] на јамка m е дадена со
: <math>\displaystyle N_{m}\Phi _{m}=\sum\limits_{n=1}^{K}L_{m,n}i_{n}.</math>
Еве Nm го означува бројот вртежи во јамка m , Φm на [[магнетен флукс]] низ овој циклус, и LM, n се некои константи. Оваа равенка произлегува од [[Амперовиот закон]] - магнетните полиња и струи се линеарни функции на струи. Според законот на индукција [[Фарад|Фарадеј]], имаме
: <math>\displaystyle v_{m}=N_{m}\frac{d\Phi _{m}}{dt}=\sum\limits_{n=1}^{K}L_{m,n}\frac{di_{n}}{dt},</math>
каде што vm означува напон предизвикан во колото m. Ова се согласува со дефиницијата на индуктивност погоре, ако коефициентите Lm, n се идентификувани со коефициентите на индуктивност. Бидејќи вкупните тековни Nnin придонесе за тоа Φm, исто така, произлегува дека Lm, n е пропорционална на производот на  NmNn.
[[Податотека:Mutually_inducting_inductors.PNG|right|thumb|231x231px|Застапеност коло дијаграм на взаемни намотки. Две вертикални линии помеѓу намотки укажуваат на цврсто јадро дека жиците на намотки се обвиткани околу. "N: М" покажува соодносот меѓу бројот на намотки на левата страна и намотки на десната страна. Оваа слика исто така, покажува конвенција точка.<br>
]]
Заемна индуктивност се случува кога промената на струја во една намотка индуцира напон во друга намотка. Важно е како механизам со кој [[трансформаторот]] работи, но тоа исто така може да предизвика несакани дејства помеѓу диригенти во колото.
 
Меѓусебната индуктивност, М, исто така е мерка на спрега помеѓу две намотки. Меѓусебната индуктивност коло од i на колото ѕ е дадена од страна на двојната формула составена од [[Нојман]], видете [[техники пресметка]]
 
Меѓусебната индуктивност, исто така, има врска:
: ''N''<sub>1</sub> е бројот на навои во калем 1,
: ''N''<sub>2</sub> е број на навои во калем 2,
: ''P''<sub>21</sub> е простор [[окупиран]] од флуксот.
Меѓусебната индуктивност, исто така, има врска со коефициентот на спојување. коефициент на влечната спојка е секогаш меѓу 1 и 0, и е лесен начин за да се определи односот меѓу одредена ориентација на намотки со произволна индуктивност:
: <math>M = k \sqrt{L_1 L_2} \! </math>
 
=== Застапеност во матрица ===
Колото може да се опише со кој било  параметар од матрицата. Најдиректен се z [[параметри]], кои се дадени од страна на
: <math> [\mathbf z] = s \begin{bmatrix} L_1 \ M \\ M \ L_2 \end{bmatrix} </math>
каде s е [[комплексна променлива]].
 
=== Еквивалентно коло ===
 
=== Наместен трансформатор ===
Кога двете страни на трансформатор се [[наместени кола]], износот на меѓусебна индуктивност помеѓу две намотки, заедно со [[факторот на Q]] на колото, се утврдува формата на кривата на реакција на фреквенцијата. На наместени коло заедно со оптоварување на трансформаторот формираат [[RLC коло]] со одреден врв солгасно со фреквенцијата. Кога и двете страни на трансформатор се вклучени, како што е опишан како двојно-наместени. Обединувањето на [[двојно подесени кола]] е опишан како loose-, критичко-, или над-комбинација во зависност од вредноста на k. Кога две наместени кола се  заедно преку меѓусебна индуктивност, пропусниот опсег ќе биде тесен. Како што износот на меѓусебната индуктивност се зголемува, пропусниот опсег продолжува да расте. Кога меѓусебна индуктивност е зад критичната точка, врвот во кривата на одзив почнува да се намалува, и фреквенцијата на центарот ќе се атенуирана посилно од неговите директни sidebands. Ова е познато како преку спојка.
 
=== Идеални трансформатори ===
Кога k = 1, индуктор кој е наведен како е тесно поврзан. Ако во тоа, само-индуктивноста оди до бесконечност, индукторот станува идеален [[трансформатор]]. Во овој случај на напон, струја, како и бројот на вртежи може да се поврзе на следниов начин:
: <math>V_\text{s} = \frac{N_\text{s}}{N_\text{p}} V_\text{p} </math>
каде
 
== Техничка пресметка ==
Во најопшт случај, индуктивноста може да се пресмета од Максвеловите равенки. Многу важни случаи може да се решат со користење на поедноставувања. Каде што се смета за висока фреквенција струја, со [[ефект на кожата]], површината тековната густина и магнетното поле може да се добие со решавање на равенката Лапласова. Каде проводници се тенки жици, само-индуктивноста уште зависи од радиусот на жица и дистрибуцијата на струја во жица. Ова моменталната распределба е приближно константна (на површината или на обемот на жица) за радиус од жица многу помала од другите.
 
=== Заемна индуктивност на две жици ===
Меѓусебната индуктивност со коло m на  коло n е дадена со двоен состав од [[Нојмановата формула]]
<ref>{{Шаблон:Наведено списание|title=Allgemeine Gesetze der inducirten elektrischen Ströme|journal=Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, aus dem Jahre 1845|year=1847|first=F. E.|last=Neumann|pages=1–87|id=}}</ref>
: <math> L_{m,n} = \frac{\mu_0}{4\pi} \oint_{C_m}\oint_{C_n} \frac{\mathbf{dx}_m\cdot\mathbf{dx}_n}{|\mathbf{x}_m - \mathbf{x}_n|} </math>
Симболот μ0 означува [[магнетна константа]] (4π × 10-7 H / m), Cm и Cn се криви жици. Погледнете [[изведувањето]] на оваа равенка.
 
=== Само-индуктивност на жица ===
Формално, само-индуктивност на жица ќе им биде дадена од страна на горната равенка со m = n. Проблемот, сепак, е дека 1 / | Х-х "| сега станува бесконечна, што доведува до логаритамски различна индуктивност. Ова бара преземање на конечни радиус жица и дистрибуција на струја во жица во предвид. Остануваат придонесот од интеграл над сите точки со | x-x "| > / 2 и корекција мандат,<ref name="den12">{{Шаблон:Наведено списание|title=Self inductance of a wire loop as a curve integral|journal=Advanced Electromagnetics|year=2016|first=R.|last=Dengler|volume=5|issue=1|pages=1-8|bibcode=|doi=}}</ref>
: <math> L = \left (\frac{\mu_0}{4\pi} \oint_{C}\oint_{C'} \frac{\mathbf{dx}\cdot\mathbf{dx}'}{|\mathbf{x} - \mathbf{x}'|}\right )_{|\mathbf{x} - \mathbf{x}'| > \frac{a}{2}} + \frac{\mu_0}{4\pi}lY + O\left( \mu_0 a \right ).</math>
Еве и јас го означив радиусот и должината на жицата,  Y е константа која зависи од дистрибуцијата на струја во жица: y = 0 кога тековната тече по површината на жица ([[кожа ефект]]), Y = 1/2 кога струјата е хомогена во жица.Грешка (μ0a) е мала, кога  жицата е долга во споредба со радиусот.
 
=== Метод на слика ===
 
=== Односот помеѓу индуктивност и капацитетот ===
Индуктивност по должина L 'и [[капацитет]] со должината C 'се поврзани едни со други во посебен случај на [[далеководите]] кои се состојат од два паралелни проводници совршени за произволен, но постојан пресек,<ref name="class_electro75">{{Шаблон:Наведена книга|last=Jackson|first=J. D.|title=Classical Electrodynamics|year=1975|publisher=Wiley|page=262}}</ref>
: <math>\displaystyle L'C'={\varepsilon \mu}.</math>
Тука ε и µ на диелектрични константи и [[магнетна пермеабилност]] на медиумот дека проводници се вградени. Не постои струја и  магнетно поле во внатрешноста на проводници. Тековната тече надолу по една линија и се враќа на другиот. Сигнали ќе се пропагираат на линијата за пренос на брзината на електромагнетното зрачење во не-проводен медиум обвиен со проводници.
 
== Само-индуктивност на едноставни електрични кола во воздухот ==
\right) \text{for }w \gg 1
\end{align}</math>
|
 
|-
''l'': Length
|}
Симболот μ0 означува [[магнетна константа]] (4π × 10-7 H / m). За високи фреквенции, електричната струја тече по површината на проводникот ([[кожата ефект]]) и, во зависност од геометрија, понекогаш е потребно да се направи разлика на ниско и високо фреквентни индуктанти. Ова е целта на константата Y: Y = 0 кога струјата е рамномерно распределена во текот на површината на жица (кожата ефект) на, Y = 1/2 кога струјата е рамномерно распределени во текот на пресек на жица. Во случај на висока фреквенција, ако доближиме проводници, дополнителен скрининг струја ќе тече во нивната површина, и изразите кои содржат Y станат неважечки. 
 
== Индуктивност со физичка симетрија ==
 
=== Индуктивност на електромагнет ===
[[Електромагнетот]] е долга, тенка намотка; на пример, намотка чија должина е многу поголема од својот дијаметар. Под овие услови, и без никакви магнетни материјали се користат, густина '''B''' на магнетниот тек во рамките на [[намотката]] која е  постојана и е дадена со
: <math>\displaystyle B = \frac{\mu_0 Ni}{l}</math>
каде што μ0   е [[магнетна константа]], N бројот на вртежи, i сегашните и l должината на намотката. Игнорирање на крајниот ефект, вкупниот магнетен флукс низ серпентина се добива со множење на густина на флукс B со напречниот пресек област A :
: <math>\displaystyle \Phi = \frac{\mu_0 N i A}{l},</math>
Кога ова е во комбинација со дефиницијата на индуктивност,
Табела на индуктивност за краток електромагнет на различен дијаметар во должина должина е пресметано со Dellinger, Whittemore и Оулд<ref>{{Шаблон:Наведено списание|url=http://books.google.com/books?id=Xn8KbsgeFrwC&pg=PA248#v=onepage&q=&f=false|title=Radio Instruments and Measurements|author=D. Howard Dellinger, L. E. Whittmore, and R. S. Ould|year=1924|journal=NBS Circular|publisher=National Bureau of Standards|volume=C74|accessdate=2009-09-07}}</ref>
 
Ова, како и индуктивност на посложени форми, може да се изведе од [[Максвеловите равенки]]. За крути воздушно-јадрени калеми, индуктивност е во функција на геометриска намотка и бројот вртежи, и е независен од струја.
 
Слична анализа се однесува на електромагнетот со магнетно јадро, но само ако должината на намотката е многу поголема од производ на релативната пропустливост на магнетно јадро и дијаметар. Тоа ја ограничува едноставната анализа за ниско-пропустливи јадра, или екстремно долги и тенки електромагнети. Иако ретко се корисни, равенките се,
 
=== Индуктивност на коаксијални линии ===
Нека внатрешниот проводник има радиус r и [[пропустливост]] \ mu_i, нека диелектриците помеѓу внатрешниот и надворешниот проводник имаат пропустливост \ mu_d, и нека надворешниот проводник имаат внатрешен радиус r_ {О1}, надворешен радиус r_ {О2}, и пропустливост \ mu_o . Да претпоставиме дека  DC струја тече во спротивни насоки во два спроводници, со униформа густина на струја. Магнетното поле генерирано од овие струи  во насока на азимутска  е и во функција на радиус r; тоа може да се пресметуваат со користење законот [[Ампер]] е:
: <math>\begin{align}
0 \leq r \leq r_i: B(r) &= \frac{\mu_i I r}{2 \pi r_i^2} \\
 
== Анализа на струјно коло и импеданса ==
Ако сигналите на напонот и струјата се синус, со користење на [[phasors]], што е еквивалентно на [[импеданса]] на индуктивност е дадена со:
: <math>Z_L = \frac{V}{I} = j \omega L \, </math>
каде
: ''j'' е [[имагинарен број]],
: ''L'' е индуктивноста,
: ''ω = 2πf'' е агол,
: ''f'' е [[фрекфенцијата]]
: ''ωL = X<sub>L</sub>'' е индуктивна [[Реактант|реактанта]].
 
== Нелинеарна индуктивност ==
Многу проводници  прават употреба на [[магнетни материјали]]. Овие материјали преку доволно голем спектар покажуваат нелинеарни пропустливост со такви ефекти како сатурација. Од друга страна, сатурација прави резултат на индуктивност во функција на применета струја. Фарадеев закон, но се 'уште има индуктивност е двосмислена и е различна, без разлика дали се пресметуваат параметри спој или магнетни струи.
 
Секанс или голем-сигнал на индуктивност  се користи во флукс пресметки. И се дефинира како:
Диференцијали или мали сигнали на индуктивност , од друга страна, се користи за пресметка на напонот. И се дефинира како:
: <math>L_d(i)\ \overset{\underset{\mathrm{def}}{}}{=} \ \frac{d(N\Phi)}{di} = \frac{d\Lambda}{di}</math>
Напон на колото за нелинеарни намотки се добива преку диференцијална индуктивност како што е прикажано од страна на Фарадеев закон и владеењето на [[синџирот на анализа.]]
: <math>v(t) = \frac{d\Lambda}{dt} = \frac{d\Lambda}{di}\frac{di}{dt} = L_d(i)\frac{di}{dt}</math>
Постојат слични дефиниции за нелинеарна слична индуктивност.
25

уредувања