Лудвиг Болцман: Разлика помеѓу преработките

[проверена преработка][непроверена преработка]
Избришана содржина Додадена содржина
Нема опис на уредувањето
Нема опис на уредувањето
Ред 65:
 
[[File:Boltzmanns-molecule.jpg|225px|thumb|right|Boltzmann's 1898 I<sub>2</sub> molecule diagram showing atomic "sensitive region" (α, β) overlap.]]
Голем дел од [[физизичките]] основања не биле споделени од неговото верување во реалноста на [[атом]]ите и [[молекул]]ите — биле споделени од [[Џејмс Клерк Максвел|Максвел]] во Шкотска и [[Џосаја Вилард Гибс|Гибс]] во САД; и од други хемичари по откритијата на Џон Далтон во 1808.Тој водел долготраен спор со the уредникот на моќниот германски весник по физика во тоа време, кој одбил Болцман да ги упатува атомите и молекулите како нешто друго освен погодни [[теоретски]] конструкции. Само неколку години по смртта на Болцман, [[Жан Баптист Перин|Периновите]] студии за [[колоид]]ни суспензии (1908–1909), базирани на [[Алберт Анштајн|Анштајновите]] [[теоретски студии]] од 1905, ги потврдило вредностите на [[Авогадровиот број]] и [[Болцманова константа|Болцмановата константа]], и го убедиле светот дека и најситните честички навистина постојат.
Much of the [[physics]] establishment did not share his belief in the reality of [[atom]]s and [[molecule]]s — a belief shared, however, by [[James Clerk Maxwell|Maxwell]] in Scotland and [[Josiah Willard Gibbs|Gibbs]] in the United States; and by [[History of chemistry#The dispute about atomism|most]] [[chemistry|chemists]] since the discoveries of [[John Dalton]] in 1808. He had a long-running dispute with the editor of the preeminent German physics journal of his day, who refused to let Boltzmann refer to atoms and molecules as anything other than convenient [[Theory#Science|theoretical]] constructs. Only a couple of years after Boltzmann's death, [[Jean Baptiste Perrin|Perrin's]] studies of [[colloid]]al suspensions (1908–1909), based on [[Albert Einstein|Einstein's]] [[Albert Einstein#Thermodynamic fluctuations and statistical physics|theoretical studies]] of 1905, confirmed the values of [[Avogadro's number]] and [[Boltzmann constant|Boltzmann's constant]], and convinced the world that the tiny particles [[Atomic theory#History|really exist]].
 
To quote [[Max Planck|Planck]], "The [[logarithm]]ic connection between [[entropy]] and [[probability]] was first stated by L. Boltzmann in his [[kinetic theory]] of gases".<ref>Max Planck, p. 119.</ref> This famous formula for entropy ''S'' is<ref>The concept of [[entropy]] was introduced by [[Rudolf Clausius]] in 1865. He was the first to enunciate the [[second law of thermodynamics]] by saying that "entropy always increases".</ref><ref>An alternative is the [[Information entropy#Formal definitions|information entropy]] definition introduced in 1948 by [[Claude Elwood Shannon|Claude Shannon]].[http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html] It was intended for use in communication theory, but is applicable in all areas. It reduces to Boltzmann's expression when all the probabilities are equal, but can, of course, be used when they are not. Its virtue is that it yields immediate results without resorting to [[factorial]]s or [[Stirling's approximation]]. Similar formulas are found, however, as far back as the work of Boltzmann, and explicitly in [[H-theorem#Quantum mechanical H-theorem|Gibbs]] (see reference).</ref>