Разлика помеѓу преработките на „Теорија за релативноста“

с
нема опис на уредувањето
с
с
Второ, специјалниот релативитет се применува кај [[елементарна честичка|елементрните честички]] и нивните заемодејства, додека пак општиот релативитет се применува во [[космологија]]та и астрофизиката како и во астрономијата.<ref name=relativity/>
 
Трето, специјалниот релативитет беше целосно прифатен од заедницата на физичарите до 1920 г. Оваа теорија забрзано стана значаен и потребен алат за теоретичарите и експерименталистите[[опит]]ниците во новите полиња на [[атомска физика|атомската физика]], [[нуклеарна физика|нуклеарната физика]] и [[квантна механика|квантната механика]]. Општиот реалтивитет, се покажал дека е неупотреблив. Се покажало дека има мала применливост во опитите бидејќи скоро сите примени биле со астрономски големини. Се чинела ограничена за правење на мали незначајни исправки на предвидувањата на Њутновата теорија за гравитацијата.<ref name=relativity/>
 
Конечно, [[тензор|математиката на општиот релативитет]] се покажала како многу тешка. Како последица теоријата била позната на одрден број на луѓе, и постоеле само неколку луѓе кои целосно ја разбирале општата теорија, но сето ова за теоријата било негирано од [[Ричард Фејнман]]. Околу 1960 г. се засилува интересот за општиот релативитет со што теоријата има централно значење во физиката и астрономијата. Новите математички методи кои се применети во општиот релативитет значително ги олесниле пресметките. Одовде се добиени најразлични физички концепти. Исто така со откривањето на нови астрономски [[појава|појави]], во кои општиот релативитет е од важност го засилија интересот за теоријата. Вакви астрономски појави биле [[квазар]]ите (1963 г.), 3 К [[микробраново позадинско зрачење]] (1965 г.), [[пулсар]]ите (1967 г.), и со откривањето на првите кандидати за [[црна дупка (1981 г.).<ref name=relativity/>
технички, општиот релативитет е теорија на [[гравитација]]та чија дефинирачка особина е употребата на [[Ајнштајнови равенки|Ајнштајновите равенки]]. Решенијата на равенките се [[метрички тензор (општ релативитет)|метрички тензори]] кои ја дефинираат [[топологија]]та на времепросторот и како телата се движат инерцијално.
 
==ЕксперименталниОпитни докази==
 
===Тестови за специјалниот релативитет===
{{Главна статија|тестови за специјалниот релативитет}}
 
[[File:Michelson-Morley experiment (en).svg|thumb|Изглед на [[Мајкелсон–Морлиев експериментопит|Мајкелсон–Морлиевиот експериментопит]]]]
 
Како и сите [[проверливост|проверливи]] научни теории, теоријата за релативитетот обезбедува предвидувања кои можат да бидат научно тестирани. Во случајот на специјалната теорија тоа се: принципот на релативитетот, постојаноста на брзината на светлината и временската дилатација.<ref name=faq>{{Cite web |last=Roberts |first=T |last2=Schleif |first2=S |last3=Dlugosz |first3=JM (ed.) |year=20 07 |title=What is the experimental basis of Special Relativity? |url=http://math.ucr.edu/home/baez/physics/Relativity/SR/experiments.html |work=Usenet Physics FAQ |publisher=University of California, Riverside |accessdate=2010-10-31}}</ref> Предвидувањата на специјалниот релативитет се потврдени со бројни тестови од моментот кога Ајнштајн го објаавил својот труд во 1905 г., но три експериментиопити кои се изведени во периодот од 1881 до 1938 г. се однајголема важност за потврдување на веродостојноста на теоријата. Ова се трите обиди [[Мајкелсон–Морлиев експериментопит|Мајкелсон–Морлиевиот експериментопит]], [[Кенеди-Торндајков експериментопит|Кенеди-Торндајковиот експериментопит]], и [[Ивес-Стивелов експериментопит|Ивес-Стивеловиот експеримент опит]]. Ајнштајн ги добил [[Лоренцови трансформации|Лоренцовите трансформации]] од првите принципи во 1905 г., но овие три опити дозволија од резултатите да се добијат трансформациите како опитни докази.
 
[[Максвелови равенки|Максвеловите равенки]] – основата на класичниот електромагнетизам – ја опишуваат светлината како што истаат се движи со својата постојана брзина. Современото гледиште е дека на светлината не и е потребна средина за да се движи, но Максвел и неговите современици беа убедени дека светлината се движи во средин а на начин како што звукот се движи низ воздухот, брановите се движат по површината на барата. Оваа хипотетичка средина се нарекувала [[етер]], која мирувала во однос на „статични ѕвезди“ и низ кој Земјата се движи. Френеловата претпоставка за парцијално завлекување на етерот го исклучувала мерењето на ефектите на величината од прв ред (v/c), иако постоелеможност за набљудувања на ефекти од втор ред (v<sup>2</sup>/c<sup>2</sup>), Максвел сметал дека овие ефекти се премногу мали за да бидат забележани од тогашната технологија.<ref name=maxb>{{Citation|last=Maxwell|first=James Clerk|year=1880|title=[[s:Motion of the Solar System through the Luminiferous Ether|On a Possible Mode of Detecting a Motion of the Solar System through the Luminiferous Ether]]|journal=Nature|volume=21|pages=314–315}}</ref><ref name="Pais 1982 111–113">{{cite book|last=Pais|first=Abraham|title="Subtle is the Lord ...": The Science and the Life of Albert Einstein|year=1982|publisher=Oxford Univ. Press|location=Oxford|isbn= 0192806726 |pages=111–113|edition=1st ed.}}</ref>
 
Мајкелсон–Морлиевиот експериментопит бил осмислен да ги забележи ефектите од втор ред во „струењата на етерот“ – движењата на етерот релативно во однос на Земјата. Мајкелсон осмислил инструмент наречен [[Мајкелсонов интерферометар]] со кој би ги извршил мерењата. Справата била доволно прецизна за да ги забележи овие ефекти,но не добил никакви резултати кога го извел опитот во 1881 г.,<ref name=michel1>{{Cite journal |author = Michelson, Albert A. |title = [[s:The Relative Motion of the Earth and the Luminiferous Ether|The Relative Motion of the Earth and the Luminiferous Ether]] |journal = American Journal of Science |volume = 22 |year = 1881 |pages = 120–129}}</ref> и повторно во 1887 г.<ref name=michel2>{{Cite journal |author=[[Albert A. Michelson|Michelson, Albert A.]] & Edward W. Morley|Morley, Edward W. |title=[[s:On the Relative Motion of the Earth and the Luminiferous Ether|On the Relative Motion of the Earth and the Luminiferous Ether]] |journal=American Journal of Science |volume=34 |year=1887 |pages=333–345 }}</ref> Иако не успеал да го забележи струењето на етерот, tрезултатите биле прифатени од научната средина.<ref name="Pais 1982 111–113"/> Во обид да го спаси тврдењето за етерот, Фитцџералд и Лоренц независно создале [[ад хок хипотеза]] во која должината на материјалните тела се менуваспоред начинот на движењето низ етерот.<ref>{{cite book|last=Pais|first=Abraham|title="Subtle is the Lord ...": The Science and the Life of Albert Einstein|year=1982|publisher=Oxford Univ. Press|location=Oxford|isbn= 0192806726|page=122|edition=1st ed.}}</ref> Ова е зачетокот на [[Фитцџералд–Лоренцова контракција|Фитцџералд–Лоренцовата контракција]], но нивната хипотеза немала теориска основа. Толкувањето на нултиот резултат на Мајкелсон–Морлиевиот експериментопит е дека времето потребно за изминување на кружниот пат за светлината е [[изотропен]] (независен од насоката), но резултатот сам по себе не е доволен за да се прифати или отфрли теоријата за етерот и предвидувањата на специјалната теорија за релативитетот.<ref name="robertson">{{cite journal|last=Robertson|first=H.P.|title=Postulate versus Observation in the Special Theory of Relativity|journal=Reviews of Modern Physics|date=July 1949|volume=21|issue=3|pages=378–382|bibcode = 1949RvMP...21..378R |doi = 10.1103/RevModPhys.21.378 }}</ref><ref name="tw">{{cite book|last=Taylor|first=Edwin F.|title=Spacetime physics: Introduction to Special Relativity|year=1992|publisher=W.H. Freeman|location=New York|isbn=0716723271|pages=84–88|edition=2nd ed.|author2=John Archibald Wheeler }}</ref>
 
[[File:Kennedy-Thorndike experiment DE.svg|left|thumb|[[Кенеди-Торндајков експериментопит|Кенеди-Торндајковиот експериментопит]] прикажан со интереферентните прстени.]]
 
Додека Мајкелсон–Морлиевиот експериментопит покажал дека брзината на светлината е изотропна, не покажал ништо за тоа како големината на брзината се менува (ако и воопшто се случува) во различни [[инерцијален појдовен систем|инерцијали појдовни системи]]. Кенеди-Торндајковиот експериментопит бил осмислен токму за таа цел, и за првпат бил изведен во 1932 г. од страна на Рој Кенеди и Едвард Торндајк.<ref name=KT>{{cite journal |last=Kennedy |first=R. J. |authorlink= |author2=Thorndike, E. M. |year=1932 |title=Experimental Establishment of the Relativity of Time |journal=Physical Review |volume=42 |issue=3 |pages=400–418 |doi=10.1103/PhysRev.42.400 |url= |accessdate= |bibcode = 1932PhRv...42..400K }}</ref> И тие добиле нула какао резултат, и заклучиле дека „не постои ефект ... освен во случајот кога брзината на сончевиот систем во просторот е помалку од половина од брзината на Земјата во сопствената орбита“.<ref name="tw"/><ref>{{cite journal|last=Robertson|first=H.P.|title=Postulate versus Observation in the Special Theory of Relativity|journal=Reviews of Modern Physics|date=July 1949|volume=21|issue=3|page=381|doi=10.1103/revmodphys.21.378|bibcode = 1949RvMP...21..378R }}</ref>Таа можност се сметала за премногу за да обезбеди прифатливо објаснување, па од добиениот резултат со вредност нула се заклучува дека временскиот период потребен на светлината за изминувањето на кружниот пат на светлината е подеднаков во сите правци на инерцијалните појдовни системи.<ref name="robertson" /><ref name="tw" />
 
Ивес-Стивеловиот експериментопит за првпат бил изведен од Херберт Ивес и Г.Р. Стивел first во 1938 г.<ref>{{cite journal |last=Ives |first=H. E. |authorlink= |author2=Stilwell, G. R. |year=1938 |title=An experimental study of the rate of a moving atomic clock |journal=Journal of the Optical Society of America |volume=28 |issue=7 |pages=215 |bibcode=1938JOSA...28..215I |url= |accessdate= |doi=10.1364/JOSA.28.000215 }}</ref> и повторно со подобрена прецизност во 1941 г.<ref name=Ives1941>{{cite journal |last=Ives |first=H. E. |authorlink= |author2=Stilwell, G. R. |year=1941 |title=An experimental study of the rate of a moving atomic clock. II |journal=Journal of the Optical Society of America |volume=31 |issue=5 |pages=369 |bibcode=1941JOSA...31..369I |url= |accessdate= |doi=10.1364/JOSA.31.000369 }}</ref> Бил осмислен да го тестира [[трансферзален Доплеров ефект|Доплеровиот ефект]] – [[црвено поместување|црвеното поместување]] на светлината на подвижен извор во насока нормална на сопствената брзина – што и било предвидено од Ајнштајн во 1905 г. Целта била да се споредат набљудуваниите Доплерови промени со она што било предвидено од класичната теорија, и да се добие [[Лоренцов фактор|Лоренцовиот фактор]] за исправки. Ваква исправка била набљудувана, од која се заклучува дека фреквенцијата на подвижен атомски часовник се менува според специјалната теорија за релативитетот.<ref name="robertson" /><ref name="tw" />
 
Овие класични опити се повторени многупати со зголемена прецизност. Други опити се, на пример, тестовите дека релативистичката енергија и импулс се зголемуваат при големи брзини, временската дилатација на подвижните честички, и современите потраги за прекршување на Лоренцовите трансформации.
[[Општиот релативитет]] (ОР) е [[теорија за гравитација]]та кој била развиена од страна на [[Алберт Ајнштајн]] меѓу 1907 и 1915 г., и со придонеси од многу други по 1915 г.
 
Моментално, може да се каже дека не се работи само за едноставен теориски научен интерес или потреба од експерименталнаопит потврда, анализата на релативистичките ефекти за мерење на времето е важно практичен инженерски проблем при работата на глобалниот позиционен систем како што се [[ГПС]], [[ГЛОНАСС]], и системот кој се гради [[Галилео (сателитска навигација)|Галилео]], како и високо прецизното расејување на времето.<ref name=Francis2002>{{cite journal|last=Francis|first=S.|author2=B. Ramsey |author3=S. Stein |author4=Leitner, J. |author5=M. Moreau. J. M. |author6=Burns, R. |author7=Nelson, R. A. |author8=Bartholomew, T. R. |author9= Gifford, A. |displayauthors=9 |title=Timekeeping and Time Dissemination in a Distributed Space-Based Clock Ensemble|journal=Proceedings 34th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting|year=2002|page=201&ndash;214|url=http://tycho.usno.navy.mil/ptti/ptti2002/paper20.pdf|accessdate=14 April 2013}}</ref> Инструментите како што се електронските микроскопи па се до забрзувачите на честички едноставно не би работеле ако не се земени во предвид релативистичките ефекти.
 
==Секојдневни примени==