Разлика помеѓу преработките на „Логика на непрецизноста“

промена во воведната реченица на воведот
с (SmartM&M ја премести страницата Неопределена логика на Логика на непрецизноста: Објавен е стурчен академски труд од областа на логиката...)
(промена во воведната реченица на воведот)
'''НеопределенатаЛогиката на непрецизноста''' или '''неопределената логика''' (наречена и '''„фази“ логика''' од [[англ.]] ''fuzzy logic'') е облик на [[повеќевредносна логика]] изведена од [[неодредено множество|теоријата на неодредените множества]] која се занимава со [[расудување]] кое не е прецизно, туку приближно. За разлика од [[бивалентност|бинарните]] (двовредносни) множества кои имаат ''[[бивалентност|бинарна логика]]'', позната и како ''реска логика'', променливите во неопределената логиката може да имаат [[Функција на припадност|вредност на припадност]] не само од 0 или 1. Кај [[неопределено множество|неопределените („фази“) множества]] припадниците може да имаат било која вредност од 0 до 1, па така и во неопределената логика [[степен на вистинитост|степенот на вистинитост]] на еден [[исказ]] може да изнесува било која вредност помеѓу 0 и 1, и како таков не е ограничен на две [[вистинитосна вредност|вистинитосни вредности]] {точно (1), неточно (0)} како кај класичната [[исказна логика]].<ref>Novák, V., Perfilieva, I. and Močkoř, J. (1999) ''Mathematical principles of fuzzy logic'' Dodrecht: Kluwer Academic. [[ISBN]] 0-7923-8595-0</ref> А кога се користат ''[[лингвистика|лингвистички]] променливи'', овие степени може да се раководат според конкретни функции.
 
Поимот „неопределена (т.е. ''фази'') логика“ почнал да се употребува како резултат на развојот на теоријата на неопределените множества на [[Лотфи Аскер Заде]]<ref>{{нмс |url=http://plato.stanford.edu/entries/logic-fuzzy/ |title=Неопределена („фази“) логика |accessdate=2008-09-29 |work=[[Стенфордска енциклопедија на философијата]] |publisher=Стенфордски универзитет |date=2006-07-23}} {{en}}</ref>.